Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States.
Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States.
J Proteome Res. 2018 Nov 2;17(11):3614-3627. doi: 10.1021/acs.jproteome.8b00341. Epub 2018 Oct 8.
Over the past decade, a suite of new mass-spectrometry-based proteomics methods has been developed that now enables the conformational properties of proteins and protein-ligand complexes to be studied in complex biological mixtures, from cell lysates to intact cells. Highlighted here are seven of the techniques in this new toolbox. These techniques include chemical cross-linking (XL-MS), hydroxyl radical footprinting (HRF), Drug Affinity Responsive Target Stability (DARTS), Limited Proteolysis (LiP), Pulse Proteolysis (PP), Stability of Proteins from Rates of Oxidation (SPROX), and Thermal Proteome Profiling (TPP). The above techniques all rely on conventional bottom-up proteomics strategies for peptide sequencing and protein identification. However, they have required the development of unconventional proteomic data analysis strategies. Discussed here are the current technical challenges associated with these different data analysis strategies as well as the relative analytical capabilities of the different techniques. The new biophysical capabilities that the above techniques bring to bear on proteomic research are also highlighted in the context of several different application areas in which these techniques have been used, including the study of protein ligand binding interactions (e.g., protein target discovery studies and protein interaction network analyses) and the characterization of biological states.
在过去的十年中,已经开发出了一系列新的基于质谱的蛋白质组学方法,这些方法现在可以在复杂的生物混合物(从细胞裂解物到完整细胞)中研究蛋白质和蛋白质-配体复合物的构象特性。这里重点介绍了这个新工具包中的七种技术。这些技术包括化学交联(XL-MS)、羟基自由基足迹法(HRF)、药物亲和反应靶稳定性(DARTS)、有限蛋白水解(LiP)、脉冲蛋白水解(PP)、氧化速率的蛋白质稳定性(SPROX)和热蛋白质组分析(TPP)。上述技术都依赖于传统的自上而下的肽测序和蛋白质鉴定蛋白质组学策略。然而,它们需要开发非常规的蛋白质组数据分析策略。本文讨论了这些不同数据分析策略相关的当前技术挑战,以及不同技术的相对分析能力。还结合这些技术已被应用的几个不同的应用领域,强调了上述技术为蛋白质组学研究带来的新的生物物理能力,包括研究蛋白质配体结合相互作用(例如,蛋白质靶标发现研究和蛋白质相互作用网络分析)和生物状态的表征。