Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
Fungal Genet Biol. 2018 Dec;121:1-9. doi: 10.1016/j.fgb.2018.09.004. Epub 2018 Sep 15.
Early-diverging anaerobic fungi (order: Neocallimastigomycota), lignocelluolytic chytrid-like fungi central to fiber degradation in the digestive tracts of large herbivores, are attractive sources of cellulases and hemicellulases for biotechnology. Enzyme expression is tightly regulated and coordinated through mechanisms that remain unelucidated to optimize hydrolytic efficiency. Our analysis of anaerobic fungal transcriptomes reveals hundreds of cis-natural antisense transcripts (cis-NATs), which we hypothesize play an integral role in this regulation. Through integrated genomic and transcriptomic sequencing on a range of catabolic substrates, we validate these NATs in three species (Anaeromyces robustus, Neocallimasix californiae, and Piromyces finnis), and analyze their expression patterns and prevalence to gain insight into their function. NAT function was diverse and conserved across the three fungal genomes studied, with 10% of all metabolic process NATs associated with lignocellulose hydrolysis. Despite these similarities, however, only eleven gene targets were conserved orthologs. Several NATs were dynamically regulated by lignocellulosic substrates while their gene targets were unregulated. This observation is consistent with a hypothesized, but untested, regulatory mechanism where selected genes are exclusively regulated at the transcriptional/post-transcriptional level by NATs. However, only genes with high NAT relative expression levels displayed this phenomenon, suggesting a selection mechanism that favors larger dynamic ranges for more precise control of gene expression. In addition to this mode, we observed two other possible regulatory fates: canonical transcriptional regulation with no NAT response, and positive co-regulation of target mRNA and cognate NAT, which we hypothesize is a fine-tuning strategy to locally negate control outputs from global regulators. Our work reveals the complex contributions of antisense RNA to the catabolic response in anaerobic fungi, highlighting its importance in understanding lignocellulolytic activity for bioenergy applications. More importantly, the relative expression of NAT to target may form a critical determinant of transcriptional vs post-transcriptional (NAT) control of gene expression in primitive anaerobic fungi.
早期分支的厌氧真菌(Neocallimastigomycota 目),木质纤维素分解的毛霉样真菌,是大型草食动物消化道中纤维降解的核心,是生物技术中纤维素酶和半纤维素酶的有吸引力的来源。通过尚未阐明的机制,酶表达受到严格调节和协调,以优化水解效率。我们对厌氧真菌转录组的分析揭示了数百个顺式天然反义转录本(cis-NAT),我们假设这些转录本在这种调节中起着不可或缺的作用。通过对一系列代谢底物进行基因组和转录组测序的综合分析,我们在三个物种(Anaeromyces robustus、Neocallimasix californiae 和 Piromyces finnis)中验证了这些 NAT,并分析了它们的表达模式和普遍性,以深入了解它们的功能。NAT 的功能在研究的三个真菌基因组中是多样化和保守的,所有代谢过程 NAT 的 10%与木质纤维素水解有关。然而,尽管有这些相似之处,只有 11 个基因靶标是保守的直系同源物。一些 NAT 被木质纤维素底物动态调节,而它们的基因靶标则不受调节。这一观察结果与一个假设一致,但未经测试,即选择的基因仅在转录/转录后水平上被 NAT 专门调节的调节机制。然而,只有具有高 NAT 相对表达水平的基因显示出这种现象,这表明存在一种选择机制,有利于更大的动态范围,以更精确地控制基因表达。除了这种模式,我们还观察到另外两种可能的调节命运:没有 NAT 反应的典型转录调节,以及靶 mRNA 和同源 NAT 的正协同调节,我们假设这是一种微调策略,以局部否定全局调节剂的控制输出。我们的工作揭示了反义 RNA 对厌氧真菌代谢反应的复杂贡献,突出了其在理解木质纤维素活性以用于生物能源应用中的重要性。更重要的是,NAT 对靶标的相对表达可能形成原始厌氧真菌中基因表达的转录与转录后(NAT)控制的关键决定因素。