Department of Chemical Engineering, University of California, Santa Barbara, California, USA.
Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA.
Microbiol Mol Biol Rev. 2022 Dec 21;86(4):e0004122. doi: 10.1128/mmbr.00041-22. Epub 2022 Jul 19.
Lignocellulosic biorefineries require innovative solutions to realize their full potential, and the discovery of novel lignocellulose-active enzymes could improve biorefinery deconstruction processes. Enzymatic deconstruction of plant cell walls is challenging, as noncarbohydrate linkages in hemicellulosic sidechains and lignin protect labile carbohydrates from hydrolysis. Highly specialized microbes that degrade plant biomass are attractive sources of enzymes for improving lignocellulose deconstruction, and the anaerobic gut fungi (Neocallimastigomycetes) stand out as having great potential for harboring novel lignocellulose-active enzymes. We discuss the known aspects of Neocallimastigomycetes lignocellulose deconstruction, including their extensive carbohydrate-active enzyme content, proficiency at deconstructing complex lignocellulose, unique physiology, synergistic enzyme complexes, and sizeable uncharacterized gene content. Progress describing Neocallimastigomycetes and their enzymes has been rapid in recent years, and it will only continue to expand. In particular, direct manipulation of anaerobic fungal genomes, effective heterologous expression of anaerobic fungal enzymes, and the ability to directly relate chemical changes in lignocellulose to fungal gene regulation will accelerate the discovery and subsequent deployment of Neocallimastigomycetes lignocellulose-active enzymes.
木质纤维素生物精炼厂需要创新的解决方案来充分发挥其潜力,而新型木质纤维素活性酶的发现可以改进生物精炼厂的解构过程。植物细胞壁的酶解是具有挑战性的,因为半纤维素侧链和木质素中非碳水化合物键合保护不稳定的碳水化合物免受水解。能够降解植物生物质的高度专业化微生物是改进木质纤维素解构的酶的有吸引力的来源,而厌氧肠道真菌(Neocallimastigomycetes)因其具有蕴藏新型木质纤维素活性酶的巨大潜力而脱颖而出。我们讨论了 Neocallimastigomycetes 木质纤维素解构的已知方面,包括其广泛的碳水化合物活性酶含量、在解构复杂木质纤维素方面的熟练程度、独特的生理学、协同酶复合物以及大量未表征的基因含量。近年来,描述 Neocallimastigomycetes 及其酶的进展非常迅速,而且只会继续扩大。特别是,对厌氧真菌基因组的直接操作、厌氧真菌酶的有效异源表达以及能够将木质纤维素中的化学变化直接与真菌基因调控联系起来的能力,将加速 Neocallimastigomycetes 木质纤维素活性酶的发现和随后的部署。