Suppr超能文献

厌氧真菌(Neocallimastigomycetes)中的酶的发现推动了木质纤维素生物炼制的创新。

Enzyme Discovery in Anaerobic Fungi (Neocallimastigomycetes) Enables Lignocellulosic Biorefinery Innovation.

机构信息

Department of Chemical Engineering, University of California, Santa Barbara, California, USA.

Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA.

出版信息

Microbiol Mol Biol Rev. 2022 Dec 21;86(4):e0004122. doi: 10.1128/mmbr.00041-22. Epub 2022 Jul 19.

Abstract

Lignocellulosic biorefineries require innovative solutions to realize their full potential, and the discovery of novel lignocellulose-active enzymes could improve biorefinery deconstruction processes. Enzymatic deconstruction of plant cell walls is challenging, as noncarbohydrate linkages in hemicellulosic sidechains and lignin protect labile carbohydrates from hydrolysis. Highly specialized microbes that degrade plant biomass are attractive sources of enzymes for improving lignocellulose deconstruction, and the anaerobic gut fungi (Neocallimastigomycetes) stand out as having great potential for harboring novel lignocellulose-active enzymes. We discuss the known aspects of Neocallimastigomycetes lignocellulose deconstruction, including their extensive carbohydrate-active enzyme content, proficiency at deconstructing complex lignocellulose, unique physiology, synergistic enzyme complexes, and sizeable uncharacterized gene content. Progress describing Neocallimastigomycetes and their enzymes has been rapid in recent years, and it will only continue to expand. In particular, direct manipulation of anaerobic fungal genomes, effective heterologous expression of anaerobic fungal enzymes, and the ability to directly relate chemical changes in lignocellulose to fungal gene regulation will accelerate the discovery and subsequent deployment of Neocallimastigomycetes lignocellulose-active enzymes.

摘要

木质纤维素生物精炼厂需要创新的解决方案来充分发挥其潜力,而新型木质纤维素活性酶的发现可以改进生物精炼厂的解构过程。植物细胞壁的酶解是具有挑战性的,因为半纤维素侧链和木质素中非碳水化合物键合保护不稳定的碳水化合物免受水解。能够降解植物生物质的高度专业化微生物是改进木质纤维素解构的酶的有吸引力的来源,而厌氧肠道真菌(Neocallimastigomycetes)因其具有蕴藏新型木质纤维素活性酶的巨大潜力而脱颖而出。我们讨论了 Neocallimastigomycetes 木质纤维素解构的已知方面,包括其广泛的碳水化合物活性酶含量、在解构复杂木质纤维素方面的熟练程度、独特的生理学、协同酶复合物以及大量未表征的基因含量。近年来,描述 Neocallimastigomycetes 及其酶的进展非常迅速,而且只会继续扩大。特别是,对厌氧真菌基因组的直接操作、厌氧真菌酶的有效异源表达以及能够将木质纤维素中的化学变化直接与真菌基因调控联系起来的能力,将加速 Neocallimastigomycetes 木质纤维素活性酶的发现和随后的部署。

相似文献

1
Enzyme Discovery in Anaerobic Fungi (Neocallimastigomycetes) Enables Lignocellulosic Biorefinery Innovation.
Microbiol Mol Biol Rev. 2022 Dec 21;86(4):e0004122. doi: 10.1128/mmbr.00041-22. Epub 2022 Jul 19.
2
Lignin deconstruction by anaerobic fungi.
Nat Microbiol. 2023 Apr;8(4):596-610. doi: 10.1038/s41564-023-01336-8. Epub 2023 Mar 9.
3
Hemicellulolytic enzymes in lignocellulose processing.
Essays Biochem. 2023 Apr 18;67(3):533-550. doi: 10.1042/EBC20220154.
4
[Progress in lignocellulose deconstruction by fungi].
Sheng Wu Gong Cheng Xue Bao. 2010 Oct;26(10):1333-9.
6
Fungal lignocellulolytic enzymes and lignocellulose: A critical review on their contribution to multiproduct biorefinery and global biofuel research.
Int J Biol Macromol. 2021 Dec 15;193(Pt B):2304-2319. doi: 10.1016/j.ijbiomac.2021.11.063. Epub 2021 Nov 17.
7
An overview of fungal pretreatment processes for anaerobic digestion: Applications, bottlenecks and future needs.
Bioresour Technol. 2021 Feb;321:124397. doi: 10.1016/j.biortech.2020.124397. Epub 2020 Nov 11.
8
Expression and characterization of spore coat CotH kinases from the cellulosomes of anaerobic fungi (Neocallimastigomycetes).
Protein Expr Purif. 2023 Oct;210:106323. doi: 10.1016/j.pep.2023.106323. Epub 2023 Jun 16.
9
Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes.
Nat Microbiol. 2021 Apr;6(4):499-511. doi: 10.1038/s41564-020-00861-0. Epub 2021 Feb 1.
10
Identification of Genes Involved in the Degradation of Lignocellulose Using Comparative Transcriptomics.
Methods Mol Biol. 2017;1588:279-298. doi: 10.1007/978-1-4939-6899-2_21.

引用本文的文献

5
Mechanochemical Coupling of Catalysis and Motion in a Cellulose-Degrading Multienzyme Nanomachine.
ACS Catal. 2024 Feb 6;14(4):2656-2663. doi: 10.1021/acscatal.3c05653. eCollection 2024 Feb 16.
6
Lignin modification by anaerobes revealed.
Nat Microbiol. 2023 Apr;8(4):567-568. doi: 10.1038/s41564-023-01343-9.
7
Lignin deconstruction by anaerobic fungi.
Nat Microbiol. 2023 Apr;8(4):596-610. doi: 10.1038/s41564-023-01336-8. Epub 2023 Mar 9.

本文引用的文献

2
Cellulosome Localization Patterns Vary across Life Stages of Anaerobic Fungi.
mBio. 2021 Jun 29;12(3):e0083221. doi: 10.1128/mBio.00832-21. Epub 2021 Jun 1.
3
A multi-omics approach to lignocellulolytic enzyme discovery reveals a new ligninase activity from NO1.
Proc Natl Acad Sci U S A. 2021 May 4;118(18). doi: 10.1073/pnas.2008888118.
4
A SWEET surprise: Anaerobic fungal sugar transporters and chimeras enhance sugar uptake in yeast.
Metab Eng. 2021 Jul;66:137-147. doi: 10.1016/j.ymben.2021.04.009. Epub 2021 Apr 19.
5
The Anaerobic Fungi: Challenges and Opportunities for Industrial Lignocellulosic Biofuel Production.
Microorganisms. 2021 Mar 27;9(4):694. doi: 10.3390/microorganisms9040694.
6
Integrating Systems and Synthetic Biology to Understand and Engineer Microbiomes.
Annu Rev Biomed Eng. 2021 Jul 13;23:169-201. doi: 10.1146/annurev-bioeng-082120-022836. Epub 2021 Mar 29.
8
Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes.
Nat Microbiol. 2021 Apr;6(4):499-511. doi: 10.1038/s41564-020-00861-0. Epub 2021 Feb 1.
9
Lignin induced iron reduction by novel sp., Tolumonas lignolytic BRL6-1.
PLoS One. 2020 Sep 17;15(9):e0233823. doi: 10.1371/journal.pone.0233823. eCollection 2020.
10
High-efficiency electroporation of chytrid fungi.
Sci Rep. 2020 Sep 15;10(1):15145. doi: 10.1038/s41598-020-71618-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验