Suppr超能文献

基于机器学习算法的纺织传感器人体运动识别。

Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms.

机构信息

Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 156-743, Korea.

出版信息

Sensors (Basel). 2018 Sep 14;18(9):3109. doi: 10.3390/s18093109.

Abstract

Wearable sensors for human physiological monitoring have attracted tremendous interest from researchers in recent years. However, most of the research involved simple trials without any significant analytical algorithms. This study provides a way of recognizing human motion by combining textile stretch sensors based on single-walled carbon nanotubes (SWCNTs) and spandex fabric (PET/SP) and machine learning algorithms in a realistic application. In the study, the performance of the system will be evaluated by identification rate and accuracy of the motion standardized. This research aims to provide a realistic motion sensing wearable product without unnecessary heavy and uncomfortable electronic devices.

摘要

近年来,用于人体生理监测的可穿戴传感器引起了研究人员的极大兴趣。然而,大多数研究都只是简单的试验,没有任何重要的分析算法。本研究提供了一种在实际应用中结合基于单壁碳纳米管(SWCNT)和氨纶织物(PET/SP)的纺织拉伸传感器以及机器学习算法来识别人体运动的方法。在研究中,将通过标准化运动的识别率和准确率来评估系统的性能。本研究旨在提供一种无需使用不必要的沉重和不舒适的电子设备的现实运动感测可穿戴产品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8529/6164335/607b38b0fc88/sensors-18-03109-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验