Suppr超能文献

抑制性连接定义了兴奋性可塑性的范围。

Inhibitory connectivity defines the realm of excitatory plasticity.

机构信息

Centre National de la Recherche Scientifique (CNRS), Paris, France.

Centre de Neurophysique, Physiologie et Pathologie (CNPP), Université Descartes, Paris, France.

出版信息

Nat Neurosci. 2018 Oct;21(10):1463-1470. doi: 10.1038/s41593-018-0226-x. Epub 2018 Sep 17.

Abstract

Recent experiments demonstrate substantial volatility of excitatory connectivity in the absence of any learning. This challenges the hypothesis that stable synaptic connections are necessary for long-term maintenance of acquired information. Here we measure ongoing synaptic volatility and use theoretical modeling to study its consequences on cortical dynamics. We show that in the balanced cortex, patterns of neural activity are primarily determined by inhibitory connectivity, despite the fact that most synapses and neurons are excitatory. Similarly, we show that the inhibitory network is more effective in storing memory patterns than the excitatory one. As a result, network activity is robust to ongoing volatility of excitatory synapses, as long as this volatility does not disrupt the balance between excitation and inhibition. We thus hypothesize that inhibitory connectivity, rather than excitatory, controls the maintenance and loss of information over long periods of time in the volatile cortex.

摘要

最近的实验表明,在没有任何学习的情况下,兴奋性连接存在很大的波动性。这挑战了稳定的突触连接对于长期维持获得信息是必要的假设。在这里,我们测量了持续的突触波动性,并使用理论模型研究了其对皮质动力学的影响。我们表明,在平衡的皮质中,神经活动模式主要由抑制性连接决定,尽管大多数突触和神经元都是兴奋性的。同样,我们表明,抑制性网络比兴奋性网络更有效地存储记忆模式。因此,只要兴奋性突触的持续波动性不破坏兴奋和抑制之间的平衡,网络活动就具有很强的鲁棒性。因此,我们假设在易变的皮质中,信息的维持和丢失是由抑制性连接而不是兴奋性连接控制的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验