Suppr超能文献

靶向光学成像剂在癌症中的应用:聚焦临床应用。

Targeted Optical Imaging Agents in Cancer: Focus on Clinical Applications.

机构信息

Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109, USA.

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Contrast Media Mol Imaging. 2018 Aug 27;2018:2015237. doi: 10.1155/2018/2015237. eCollection 2018.

Abstract

Molecular imaging is an emerging strategy for in vivo visualization of cancer over time based on biological mechanisms of disease activity. Optical imaging methods offer a number of advantages for real-time cancer detection, particularly in the epithelium of hollow organs and ducts, by using a broad spectral range of light that spans from visible to near-infrared. Targeted ligands are being developed for improved molecular specificity. These platforms include small molecule, peptide, affibody, activatable probes, lectin, and antibody. Fluorescence labeling is used to provide high image contrast. This emerging methodology is clinically useful for early cancer detection by identifying and localizing suspicious lesions that may not otherwise be seen and serves as a guide for tissue biopsy and surgical resection. Visualizing molecular expression patterns may also be useful to determine the best choice of therapy and to monitor efficacy. A number of these imaging agents are overcoming key challenges for clinical translation and are being validated in vivo for a wide range of human cancers.

摘要

分子成像技术是一种基于疾病活动的生物学机制,对癌症进行实时体内可视化的新兴策略。光学成像方法通过利用从可见光到近红外的广泛光谱范围的光,为实时癌症检测提供了许多优势,特别是在中空器官和导管的上皮中。正在开发靶向配体以提高分子特异性。这些平台包括小分子、肽、亲和体、激活探针、凝集素和抗体。荧光标记用于提供高图像对比度。这种新兴方法通过识别和定位可能无法看到的可疑病变,对早期癌症检测具有临床意义,可作为组织活检和手术切除的指导。可视化分子表达模式也可能有助于确定最佳治疗选择并监测疗效。许多这些成像剂正在克服临床转化的关键挑战,并正在广泛的人类癌症中进行体内验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62e3/6129851/99537f2febe5/CMMI2018-2015237.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验