Suppr超能文献

使用改进的深度卷积生成对抗网络分类器进行皮肤病变合成与分类

Skin Lesion Synthesis and Classification Using an Improved DCGAN Classifier.

作者信息

Behara Kavita, Bhero Ernest, Agee John Terhile

机构信息

Department of Electrical Engineering, Mangosuthu University of Technology, Durban 4031, South Africa.

Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa.

出版信息

Diagnostics (Basel). 2023 Aug 9;13(16):2635. doi: 10.3390/diagnostics13162635.

Abstract

The prognosis for patients with skin cancer improves with regular screening and checkups. Unfortunately, many people with skin cancer do not receive a diagnosis until the disease has advanced beyond the point of effective therapy. Early detection is critical, and automated diagnostic technologies like dermoscopy, an imaging device that detects skin lesions early in the disease, are a driving factor. The lack of annotated data and class-imbalance datasets makes using automated diagnostic methods challenging for skin lesion classification. In recent years, deep learning models have performed well in medical diagnosis. Unfortunately, such models require a substantial amount of annotated data for training. Applying a data augmentation method based on generative adversarial networks (GANs) to classify skin lesions is a plausible solution by generating synthetic images to address the problem. This article proposes a skin lesion synthesis and classification model based on an Improved Deep Convolutional Generative Adversarial Network (DCGAN). The proposed system generates realistic images using several convolutional neural networks, making training easier. Scaling, normalization, sharpening, color transformation, and median filters enhance image details during training. The proposed model uses generator and discriminator networks, global average pooling with 2 × 2 fractional-stride, backpropagation with a constant learning rate of 0.01 instead of 0.0002, and the most effective hyperparameters for optimization to efficiently generate high-quality synthetic skin lesion images. As for the classification, the final layer of the Discriminator is labeled as a classifier for predicting the target class. This study deals with a binary classification predicting two classes-benign and malignant-in the ISIC2017 dataset: accuracy, recall, precision, and F1-score model classification performance. BAS measures classifier accuracy on imbalanced datasets. The DCGAN Classifier model demonstrated superior performance with a notable accuracy of 99.38% and 99% for recall, precision, F1 score, and BAS, outperforming the state-of-the-art deep learning models. These results show that the DCGAN Classifier can generate high-quality skin lesion images and accurately classify them, making it a promising tool for deep learning-based medical image analysis.

摘要

皮肤癌患者的预后情况会随着定期筛查和检查而改善。不幸的是,许多皮肤癌患者直到疾病发展到超出有效治疗阶段才得到诊断。早期检测至关重要,像皮肤镜检查这样的自动化诊断技术是一个推动因素,皮肤镜是一种能在疾病早期检测皮肤病变的成像设备。缺乏标注数据和类别不平衡数据集使得使用自动化诊断方法进行皮肤病变分类具有挑战性。近年来,深度学习模型在医学诊断中表现出色。不幸的是,此类模型需要大量标注数据用于训练。通过基于生成对抗网络(GAN)的数据增强方法来生成合成图像以解决问题,从而对皮肤病变进行分类是一个可行的解决方案。本文提出了一种基于改进深度卷积生成对抗网络(DCGAN)的皮肤病变合成与分类模型。所提出的系统使用多个卷积神经网络生成逼真的图像,使训练更容易。在训练期间,缩放、归一化、锐化、颜色变换和中值滤波可增强图像细节。所提出的模型使用生成器和判别器网络、2×2分数步长的全局平均池化、恒定学习率为0.01而非0.0002的反向传播以及用于优化的最有效超参数,以高效生成高质量的合成皮肤病变图像。至于分类,判别器的最后一层被标记为用于预测目标类别的分类器。本研究处理在ISIC2017数据集中预测良性和恶性两类的二分类问题:准确率、召回率、精确率和F1分数模型分类性能。BAS衡量不平衡数据集上分类器的准确率。DCGAN分类器模型表现出卓越性能,召回率、精确率、F1分数和BAS的准确率分别显著达到99.38%和99%,优于当前最先进的深度学习模型。这些结果表明,DCGAN分类器能够生成高质量的皮肤病变图像并对其进行准确分类,使其成为基于深度学习的医学图像分析的一个有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/883c/10453872/178488b60b4b/diagnostics-13-02635-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验