Suppr超能文献

利用高效、空间平衡的设计采集 AUV 图像,评估底栖生物覆盖估计的误差和不确定性。

An evaluation of the error and uncertainty in epibenthos cover estimates from AUV images collected with an efficient, spatially-balanced design.

机构信息

Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia.

Data61, Commonwealth Scientific and Industrial Research Organization (CSIRO), Hobart, Tasmania, Australia.

出版信息

PLoS One. 2018 Sep 18;13(9):e0203827. doi: 10.1371/journal.pone.0203827. eCollection 2018.

Abstract

Efficient monitoring of organisms is at the foundation of protected area and biodiversity management. Such monitoring programs are based on a systematically selected set of survey locations that, while able to track trends at those locations through time, lack inference for the overall region being "monitored". Advances in spatially-balanced sampling approaches offer alternatives but remain largely untested in marine ecosystems. This study evaluated the merit of using a two-stage, spatially-balanced survey framework, in conjunction with generalized additive models, to estimate epifauna cover at a reef-wide scale for mesophotic reefs within a large, cross-shelf marine park. Imagery acquired by an autonomous underwater vehicle was classified using a hierarchical scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI). At a realistic image subsampling intensity, the two-stage, spatially-balanced framework provided accurate and precise estimates of reef-wide cover for a select number of epifaunal classes at the coarsest CATAMI levels, in particular bryozoan and porifera classes. However, at finer hierarchical levels, accuracy and/or precision of cover estimates declined, primarily because of the natural rarity of even the most common of these classes/morphospecies. Ranked predictor importance suggested that bathymetry, backscatter and derivative terrain variables calculated at their smallest analysis window scales (i.e. 81 m2) were generally the most important variables in the modeling of reef-wide cover. This study makes an important step in identifying the constraints and limitations that can be identified through a robust statistical approach to design and analysis. The two-stage, spatially-balanced framework has great potential for effective quantification of epifaunal cover in cross-shelf mesophotic reefs. However, greater image subsampling intensity than traditionally applied is required to ensure adequate observations for finer-level CATAMI classes and associated morphospecies.

摘要

有效的生物监测是保护区和生物多样性管理的基础。这些监测项目基于系统选择的一组调查地点,这些地点虽然能够随着时间的推移跟踪这些地点的趋势,但缺乏对被“监测”的整个区域的推断。空间平衡采样方法的进步提供了替代方法,但在海洋生态系统中仍在很大程度上未经测试。本研究评估了使用两阶段、空间平衡调查框架结合广义加性模型,在一个大型跨架海洋公园内的中光礁范围内估算广泛范围内的附着生物盖度的优点。自主水下车辆采集的图像使用在协作和自动化海洋图像分析工具 (CATAMI) 下开发的分层方案进行分类。在现实的图像抽样强度下,两阶段、空间平衡框架在最粗糙的 CATAMI 级别下,为少数附着生物类别的广泛范围覆盖提供了准确和精确的估计,特别是苔藓虫和多孔动物类。然而,在更精细的层次水平上,覆盖估计的准确性和/或精度下降,主要是因为即使是这些类/形态种中最常见的类也很少见。排名预测因子重要性表明,在建模广泛的覆盖范围时,水深、反向散射和衍生地形变量在其最小分析窗口尺度(即 81 m2)计算的变量通常是最重要的变量。本研究在通过稳健的统计方法设计和分析来识别约束和限制方面迈出了重要的一步。两阶段、空间平衡框架具有在跨架中光礁中有效量化附着生物覆盖的巨大潜力。然而,需要比传统应用更高的图像抽样强度来确保更精细的 CATAMI 类和相关形态种的足够观测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61dc/6143229/521e7b53a499/pone.0203827.g001.jpg

相似文献

2
A Standardised Vocabulary for Identifying Benthic Biota and Substrata from Underwater Imagery: The CATAMI Classification Scheme.
PLoS One. 2015 Oct 28;10(10):e0141039. doi: 10.1371/journal.pone.0141039. eCollection 2015.
4
Coral reefs chronically exposed to river sediment plumes in the southwestern Caribbean: Rosario Islands, Colombia.
Sci Total Environ. 2016 May 15;553:316-329. doi: 10.1016/j.scitotenv.2016.02.140. Epub 2016 Feb 28.
5
Taking a deeper look: Quantifying the differences in fish assemblages between shallow and mesophotic temperate rocky reefs.
PLoS One. 2019 Mar 15;14(3):e0206778. doi: 10.1371/journal.pone.0206778. eCollection 2019.
6
A Citizen Science Approach: A Detailed Ecological Assessment of Subtropical Reefs at Point Lookout, Australia.
PLoS One. 2016 Oct 5;11(10):e0163407. doi: 10.1371/journal.pone.0163407. eCollection 2016.
7
A global analysis of the effectiveness of marine protected areas in preventing coral loss.
PLoS One. 2010 Feb 17;5(2):e9278. doi: 10.1371/journal.pone.0009278.
8
Expectations and Outcomes of Reserve Network Performance following Re-zoning of the Great Barrier Reef Marine Park.
Curr Biol. 2015 Apr 20;25(8):983-92. doi: 10.1016/j.cub.2015.01.073. Epub 2015 Mar 26.
10
Watershed- and island wide-scale land cover changes in Puerto Rico (1930s-2004) and their potential effects on coral reef ecosystems.
Sci Total Environ. 2015 Feb 15;506-507:241-51. doi: 10.1016/j.scitotenv.2014.11.016. Epub 2014 Nov 20.

引用本文的文献

1
On the impact of Citizen Science-derived data quality on deep learning based classification in marine images.
PLoS One. 2019 Jun 12;14(6):e0218086. doi: 10.1371/journal.pone.0218086. eCollection 2019.
2
MAIA-A machine learning assisted image annotation method for environmental monitoring and exploration.
PLoS One. 2018 Nov 16;13(11):e0207498. doi: 10.1371/journal.pone.0207498. eCollection 2018.

本文引用的文献

1
Deep-sea diversity patterns are shaped by energy availability.
Nature. 2016 May 19;533(7603):393-6. doi: 10.1038/nature17937. Epub 2016 May 11.
2
A Standardised Vocabulary for Identifying Benthic Biota and Substrata from Underwater Imagery: The CATAMI Classification Scheme.
PLoS One. 2015 Oct 28;10(10):e0141039. doi: 10.1371/journal.pone.0141039. eCollection 2015.
4
Quantifying fish assemblages in large, offshore marine protected areas: an Australian case study.
PLoS One. 2014 Oct 31;9(10):e110831. doi: 10.1371/journal.pone.0110831. eCollection 2014.
5
BAS: balanced acceptance sampling of natural resources.
Biometrics. 2013 Sep;69(3):776-84. doi: 10.1111/biom.12059. Epub 2013 Jul 11.
7
Using EUNIS habitat classification for benthic mapping in European seas: present concerns and future needs.
Mar Pollut Bull. 2012 Dec;64(12):2630-8. doi: 10.1016/j.marpolbul.2012.10.010. Epub 2012 Oct 30.
8
Multi-scale approach for predicting fish species distributions across coral reef seascapes.
PLoS One. 2011;6(5):e20583. doi: 10.1371/journal.pone.0020583. Epub 2011 May 26.
9
Global habitat suitability for framework-forming cold-water corals.
PLoS One. 2011 Apr 15;6(4):e18483. doi: 10.1371/journal.pone.0018483.
10
Monitoring for conservation.
Trends Ecol Evol. 2006 Dec;21(12):668-73. doi: 10.1016/j.tree.2006.08.007. Epub 2006 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验