Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China.
Sensors (Basel). 2023 Feb 1;23(3):1601. doi: 10.3390/s23031601.
Mobile edge computing (MEC) is a promising technique to support the emerging delay-sensitive and compute-intensive applications for user equipment (UE) by means of computation offloading. However, designing a computation offloading algorithm for the MEC network to meet the restrictive requirements towards system latency and energy consumption remains challenging. In this paper, we propose a joint user-association, task-partition, and resource-allocation (JUTAR) algorithm to solve the computation offloading problem. In particular, we first build an optimization function for the computation offloading problem. Then, we utilize the user association and smooth approximation to simplify the objective function. Finally, we employ the particle swarm algorithm (PSA) to find the optimal solution. The proposed JUTAR algorithm achieves a better system performance compared with the state-of-the-art (SOA) computation offloading algorithm due to the joint optimization of the user association, task partition, and resource allocation for computation offloading. Numerical results show that, compared with the SOA algorithm, the proposed JUTAR achieves about 21% system performance gain in the MEC network with 100 pieces of UE.
移动边缘计算 (MEC) 是一种有前途的技术,可以通过计算卸载来支持新兴的对用户设备 (UE) 延迟敏感和计算密集型的应用。然而,设计用于 MEC 网络的计算卸载算法以满足对系统延迟和能耗的限制要求仍然具有挑战性。在本文中,我们提出了一种联合用户关联、任务划分和资源分配 (JUTAR) 算法来解决计算卸载问题。具体来说,我们首先为计算卸载问题构建一个优化函数。然后,我们利用用户关联和平滑逼近来简化目标函数。最后,我们采用粒子群算法 (PSA) 来找到最优解。与最先进的 (SOA) 计算卸载算法相比,所提出的 JUTAR 算法由于对计算卸载的用户关联、任务划分和资源分配进行了联合优化,因此实现了更好的系统性能。数值结果表明,与 SOA 算法相比,在所考虑的包含 100 个 UE 的 MEC 网络中,所提出的 JUTAR 算法在系统性能方面提高了约 21%。