State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China.
CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, P.R. China.
Clin Cancer Res. 2019 Feb 15;25(4):1291-1301. doi: 10.1158/1078-0432.CCR-18-2392. Epub 2018 Sep 18.
Steroidogenic enzymes are essential for prostate cancer development. Enzymes inactivating potent androgens were not investigated thoroughly, which leads to limited interference strategies for prostate cancer therapy. Here we characterized the clinical relevance, significance, and regulation mechanism of enzyme in prostate cancer development.
expression was detected with patient specimens and prostate cancer cell lines. Function of in steroidogenesis, androgen receptor (AR) signaling, and tumor growth was investigated with prostate cancer cell lines and a xenograft model. DNA methylation and mRNA alternative splicing were investigated to unveil the mechanisms of regulation.
expression was reduced as prostate cancer progressed. 17βHSD2 decreased potent androgen production by converting testosterone (T) or dihydrotestosterone (DHT) to each of their upstream precursors. overexpression suppressed androgen-induced cell proliferation and xenograft growth. Multiple mechanisms were involved in functional silencing including DNA methylation and mRNA alternative splicing. DNA methylation decreased the mRNA level. Two new catalytic-deficient isoforms, generated by alternative splicing, bound to wild-type 17βHSD2 and promoted its degradation. Splicing factors SRSF1 and SRSF5 participated in the generation of new isoforms.
Our findings provide evidence of the clinical relevance, significance, and regulation of in prostate cancer progression, which might provide new strategies for clinical management by targeting the functional silencing mechanisms of .See related commentary by Mostaghel, p. 1139.
甾体激素生物合成酶对于前列腺癌的发展至关重要。然而,目前对于能够使雄激素失活的酶的研究还不够深入,这导致针对前列腺癌治疗的干预策略十分有限。在这里,我们对在前列腺癌发展过程中 酶的临床相关性、意义和调控机制进行了研究。
通过患者标本和前列腺癌细胞系检测 的表达情况。利用前列腺癌细胞系和异种移植模型,研究了 在甾体激素生物合成、雄激素受体(AR)信号转导和肿瘤生长中的功能。通过 DNA 甲基化和 mRNA 可变剪接研究了 调控机制。
随着前列腺癌的进展, 的表达减少。17βHSD2 通过将睾酮(T)或二氢睾酮(DHT)转化为各自的上游前体,减少了强效雄激素的产生。过表达 可抑制雄激素诱导的细胞增殖和异种移植瘤生长。 功能失活涉及多种机制,包括 DNA 甲基化和 mRNA 可变剪接。DNA 甲基化降低了 的 mRNA 水平。通过可变剪接产生的两种新的无催化活性的同工型与野生型 17βHSD2 结合,并促进其降解。剪接因子 SRSF1 和 SRSF5 参与了新同工型的生成。
我们的研究结果为 在前列腺癌进展中的临床相关性、意义和调控提供了证据,这可能为通过靶向 的功能沉默机制提供新的临床管理策略提供了依据。有关评论见莫斯塔盖尔的文章,第 1139 页。