Suppr超能文献

肽和蛋白质结构预测的简化连续溶剂模型。

Peptide and Protein Structure Prediction with a Simplified Continuum Solvent Model.

机构信息

Center for Molecular Modeling, Center for Information Technology , National Institutes of Health , Bethesda , Maryland 20892 , United States.

出版信息

J Phys Chem B. 2018 Dec 13;122(49):11355-11362. doi: 10.1021/acs.jpcb.8b07264. Epub 2018 Oct 5.

Abstract

A continuum solvent model based on screened Coulomb potentials has been simplified and parametrized to sample native-like structures in replica-exchange simulations of each of six different peptides and miniproteins. Low-energy, native, and non-native structures were used to iteratively refine 11 parameter values. The centroid of the largest cluster of structures sampled in simulations initiated from an extended conformation represents the predicted structure. The main-chain rms deviation of this prediction from the experimental structure was 0.47 Å for the 12-residue Trp-zip2, 0.86 Å for the 14-residue MBH12, 2.53 Å for the 17-residue U(1-17)T9D, 2.03 Å for the 20-residue BS1, 1.08 Å for the 20-residue Trp-cage, and 3.64 Å for the 35-residue villin headpiece subdomain HP35. The centroid of the sixth largest cluster sampled for HP35 deviated by 0.91 Å. The CHARMM22/CMAP force field was used, with an additional ψ torsion term for residues other than glycine and proline. Six parameters govern the dielectric response of the continuum solvent, and four values of surface tension approximate nonpolar effects. An atom's self-energy and interaction energies are screened independently, each depending on whether the atom is part of a charged group, a neutral hydrogen-bonding main-chain group, or any other neutral group. The parameters inferred result in strong main-chain hydrogen bonds, consistent with the view that protein folding is dominated by the formation of these bonds. (1,2) Conformations of MBH12 and BS1 were excluded from the energy-function refinement, suggesting the parameters, referred to as SCP18, are transferable. An efficient estimate of solvent-accessible surface area is also described.

摘要

基于屏蔽库仑势的连续溶剂模型已被简化并参数化,用于在 6 种不同肽和小蛋白的每个肽的 replica-exchange 模拟中采样类似天然的结构。使用低能、天然和非天然结构来迭代优化 11 个参数值。从扩展构象开始的模拟中采样的结构中最大簇的质心表示预测结构。从实验结构预测的主链均方根偏差为 Trp-zip2 的 12 个残基为 0.47 Å,MBH12 的 14 个残基为 0.86 Å,U(1-17)T9D 的 17 个残基为 2.53 Å,BS1 的 20 个残基为 2.03 Å,Trp-cage 的 20 个残基为 1.08 Å,villin 头部片段亚结构 HP35 的 35 个残基为 3.64 Å。采样的 HP35 的第六大簇的质心偏差为 0.91 Å。使用 CHARMM22/CMAP 力场,并为除甘氨酸和脯氨酸以外的残基添加额外的 ψ 扭转项。六个参数控制连续溶剂的介电响应,四个表面张力值近似非极性效应。原子的自能和相互作用能独立屏蔽,每个原子取决于它是否属于带电基团、中性氢键主链基团或任何其他中性基团。推断出的参数导致强的主链氢键,这与蛋白质折叠主要由这些氢键的形成主导的观点一致。(1,2)MBH12 和 BS1 的构象被排除在能量函数优化之外,这表明参数(称为 SCP18)可转移。还描述了一种有效的溶剂可及表面积估计方法。

相似文献

1
Peptide and Protein Structure Prediction with a Simplified Continuum Solvent Model.
J Phys Chem B. 2018 Dec 13;122(49):11355-11362. doi: 10.1021/acs.jpcb.8b07264. Epub 2018 Oct 5.
4
Exploring peptide energy landscapes: a test of force fields and implicit solvent models.
Proteins. 2004 Dec 1;57(4):665-77. doi: 10.1002/prot.20247.
6
Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues.
Comput Biol Chem. 2015 Feb;54:33-43. doi: 10.1016/j.compbiolchem.2014.11.007. Epub 2014 Dec 3.
7
FACTS: Fast analytical continuum treatment of solvation.
J Comput Chem. 2008 Apr 15;29(5):701-15. doi: 10.1002/jcc.20832.
8
Understanding folding and design: replica-exchange simulations of "Trp-cage" miniproteins.
Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7587-92. doi: 10.1073/pnas.1330954100. Epub 2003 Jun 13.
10
Folding Trp-cage to NMR resolution native structure using a coarse-grained protein model.
Biophys J. 2005 Jan;88(1):147-55. doi: 10.1529/biophysj.104.046375. Epub 2004 Nov 8.

引用本文的文献

1
Modulation of free energy landscapes as a strategy for the design of antimicrobial peptides.
J Biol Phys. 2022 Jun;48(2):151-166. doi: 10.1007/s10867-022-09605-z. Epub 2022 Apr 14.

本文引用的文献

1
Protein folding transition path times from single molecule FRET.
Curr Opin Struct Biol. 2018 Feb;48:30-39. doi: 10.1016/j.sbi.2017.10.007. Epub 2017 Nov 5.
2
Microscopic interpretation of folding ϕ-values using the transition path ensemble.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3263-8. doi: 10.1073/pnas.1520864113. Epub 2016 Mar 8.
4
Improved Generalized Born Solvent Model Parameters for Protein Simulations.
J Chem Theory Comput. 2013 Apr 9;9(4):2020-2034. doi: 10.1021/ct3010485.
6
Implicit treatment of solvent dispersion forces in protein simulations.
J Comput Chem. 2014 Aug 15;35(22):1621-9. doi: 10.1002/jcc.23655. Epub 2014 Jun 12.
7
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
8
Variational Optimization of an All-Atom Implicit Solvent Force Field to Match Explicit Solvent Simulation Data.
J Chem Theory Comput. 2013 Dec 10;9(12):5641-5652. doi: 10.1021/ct400730n.
9
Comparing a simple theoretical model for protein folding with all-atom molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17880-5. doi: 10.1073/pnas.1317105110. Epub 2013 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验