RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering (PSE) Division, Thuwal 23955-6900, Saudi Arabia.
Phys Rev Lett. 2018 Aug 31;121(9):097204. doi: 10.1103/PhysRevLett.121.097204.
We demonstrate that the nontrivial magnetic texture of antiferromagnetic Skyrmions (AFM Sks) promotes a nonvanishing topological spin Hall effect (TSHE) on the flowing electrons. This effect results in a substantial enhancement of the nonadiabatic torque and, hence, improves the Skyrmion mobility. This nonadiabatic torque increases when decreasing the Skyrmion size, and, therefore, scaling down results in a much higher torque efficiency. In clean AFM Sks, we find a significant boost of the TSHE close to the van Hove singularity. Interestingly, this effect is enhanced away from the band gap in the presence of nonmagnetic interstitial defects. Furthermore, unlike their ferromagnetic counterpart, the TSHE in AFM Sks increases with an increase in the disorder strength, thus opening promising avenues for materials engineering of this effect.
我们证明了反铁磁斯格明子(AFM Sks)的非平凡磁织构促进了流动电子的非零拓扑自旋霍尔效应(TSHE)。这种效应导致非绝热扭矩的实质性增强,从而提高了斯格明子的迁移率。当减小斯格明子的尺寸时,这种非绝热扭矩增加,因此,缩小尺寸会导致更高的扭矩效率。在清洁的 AFM Sks 中,我们发现 TSHE 在范霍夫奇点附近有显著提高。有趣的是,在存在非磁性间隙缺陷的情况下,这种效应在带隙之外得到增强。此外,与铁磁体相反,AFM Sks 中的 TSHE 随无序强度的增加而增加,因此为这种效应的材料工程开辟了有前景的途径。