Department of Neurology, Sichuan Provincial People's Hospital, Chengdu, China.
Department of Biology, St. Louis University, St. Louis, Missouri, United States of America.
PLoS One. 2018 Sep 19;13(9):e0204438. doi: 10.1371/journal.pone.0204438. eCollection 2018.
Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disorder caused by a polyglutamine-encoding CAG repeat expansion in the ATXN3 gene which encodes the deubiquitinating enzyme, ATXN3. Several mechanisms have been proposed to explain the pathogenic role of mutant, polyQ-expanded ATXN3 in SCA3 including disease protein aggregation, impairment of ubiquitin-proteasomal degradation and transcriptional dysregulation. A better understanding of the normal functions of this protein may shed light on SCA3 disease pathogenesis. To assess the potential normal role of ATXN3 in regulating gene expression, we compared transcriptional profiles in WT versus Atxn3 null mouse embryonic fibroblasts. Differentially expressed genes in the absence of ATXN3 contribute to multiple signal transduction pathways, suggesting a status switch of signaling pathways including depressed Wnt and BMP4 pathways and elevated growth factor pathways such as Prolactin, TGF-β, and Ephrin pathways. The Eph receptor A3 (Efna3), a receptor protein-tyrosine kinase in the Ephrin pathway that is highly expressed in the nervous system, was the most differentially upregulated gene in Atxn3 null MEFs. This increased expression of Efna3 was recapitulated in Atxn3 knockout mouse brainstem, a selectively vulnerable brain region in SCA3. Overexpression of normal or expanded ATXN3 was sufficient to repress Efna3 expression, supporting a role for ATXN3 in regulating Ephrin signaling. We further show that, in the absence of ATXN3, Efna3 upregulation is associated with hyperacetylation of histones H3 and H4 at the Efna3 promoter, which in turn is induced by decreased levels of HDAC3 and NCoR in ATXN3 null cells. Together, these results reveal a normal role for ATXN3 in transcriptional regulation of multiple signaling pathways of potential relevance to disease processes in SCA3.
脊髓小脑性共济失调 3 型(SCA3)是一种显性遗传性神经退行性疾病,由 ATXN3 基因中的多聚谷氨酰胺编码 CAG 重复扩展引起,该基因编码去泛素化酶 ATXN3。已经提出了几种机制来解释突变、多聚 Q 扩展的 ATXN3 在 SCA3 中的致病作用,包括疾病蛋白聚集、泛素-蛋白酶体降解受损和转录失调。更好地了解该蛋白的正常功能可能有助于阐明 SCA3 疾病的发病机制。为了评估 ATXN3 在调节基因表达中的潜在正常作用,我们比较了 WT 与 Atxn3 缺失型小鼠胚胎成纤维细胞的转录谱。ATXN3 缺失时差异表达的基因参与多个信号转导途径,表明信号转导途径的状态转换,包括下调 Wnt 和 BMP4 途径以及上调生长因子途径,如催乳素、TGF-β和 Ephrin 途径。Eph 受体 A3(Efna3)是 Ephrin 途径中的一种受体蛋白酪氨酸激酶,在神经系统中高度表达,是 Atxn3 缺失 MEFs 中差异上调最明显的基因。这种 Efna3 的表达增加在 SCA3 中选择性易损的脑区 Atxn3 敲除小鼠脑干中得到再现。正常或扩展的 ATXN3 的过表达足以抑制 Efna3 的表达,支持 ATXN3 在调节 Ephrin 信号中的作用。我们进一步表明,在缺乏 ATXN3 的情况下,Efna3 的上调与 Efna3 启动子处组蛋白 H3 和 H4 的乙酰化增加有关,这反过来又由 ATXN3 缺失细胞中 HDAC3 和 NCoR 水平降低诱导。总之,这些结果揭示了 ATXN3 在 SCA3 疾病过程中多个信号转导途径的转录调节中的正常作用。