Velcheti Vamsidhar, Schrump David, Saunthararajah Yogen
From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD.
Am Soc Clin Oncol Educ Book. 2018 May 23;38:950-963. doi: 10.1200/EDBK_199753.
Self-replication is the engine that drives all biologic evolution, including neoplastic evolution. A key oncotherapy challenge is to target this, the heart of malignancy, while sparing the normal self-replication mandatory for health and life. Self-replication can be demystified: it is activation of replication, the most ancient of cell programs, uncoupled from activation of lineage-differentiation, metazoan programs more recent in origin. The uncoupling can be physiologic, as in normal tissue stem cells, or pathologic, as in cancer. Neoplastic evolution selects to disengage replication from forward-differentiation where intrinsic replication rates are the highest, in committed progenitors that have division times measured in hours versus weeks for tissue stem cells, via partial loss of function in master transcription factors that activate terminal-differentiation programs (e.g., GATA4) or in the coactivators they use for this purpose (e.g., ARID1A). These loss-of-function mutations bias master transcription factor circuits, which normally regulate corepressor versus coactivator recruitment, toward corepressors (e.g., DNMT1) that repress rather than activate terminal-differentiation genes. Pharmacologic inhibition of the corepressors rebalances to coactivator function, activating lineage-differentiation genes that dominantly antagonize MYC (the master transcription factor coordinator of replication) to terminate malignant self-replication. Physiologic self-replication continues, because the master transcription factors in tissue stem cells activate stem cell, not terminal-differentiation, programs. Druggable corepressor proteins are thus the barriers between self-replicating cancer cells and the terminal-differentiation fates intended by their master transcription factor content. This final common pathway to oncogenic self-replication, being separate and distinct from the normal, offers the favorable therapeutic indices needed for clinical progress.
自我复制是驱动所有生物进化(包括肿瘤进化)的引擎。肿瘤治疗的一个关键挑战是针对这一恶性肿瘤的核心,同时保留健康和生命所必需的正常自我复制。自我复制可以被揭开神秘面纱:它是复制的激活,这是最古老的细胞程序,与谱系分化的激活脱钩,谱系分化是后生动物中起源较晚的程序。这种脱钩可以是生理性的,如在正常组织干细胞中,也可以是病理性的,如在癌症中。肿瘤进化选择在内在复制率最高的定向祖细胞中,通过激活终末分化程序(如GATA4)的主转录因子或其用于此目的的共激活因子(如ARID1A)的部分功能丧失,使复制与向前分化脱钩,这些定向祖细胞的分裂时间以小时计,而组织干细胞的分裂时间以周计。这些功能丧失突变使通常调节共抑制因子与共激活因子募集的主转录因子回路偏向于抑制而非激活终末分化基因的共抑制因子(如DNMT1)。对共抑制因子的药物抑制可重新平衡为共激活因子功能,激活主要拮抗MYC(复制的主转录因子协调器)的谱系分化基因,从而终止恶性自我复制。生理性自我复制继续进行,因为组织干细胞中的主转录因子激活的是干细胞程序,而非终末分化程序。因此,可药物作用的共抑制蛋白是自我复制的癌细胞与其主转录因子含量所决定的终末分化命运之间的障碍。这种致癌自我复制的最终共同途径与正常途径不同且独立,为临床进展提供了所需的良好治疗指数。