Suppr超能文献

聚焦评分能够可靠地区分脂肪变性的微小差异。

Focused scores enable reliable discrimination of small differences in steatosis.

作者信息

Homeyer André, Hammad Seddik, Schwen Lars Ole, Dahmen Uta, Höfener Henning, Gao Yan, Dooley Steven, Schenk Andrea

机构信息

Fraunhofer MEVIS, Am Fallturm 1, 28359, Bremen, Germany.

Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.

出版信息

Diagn Pathol. 2018 Sep 20;13(1):76. doi: 10.1186/s13000-018-0753-5.

Abstract

BACKGROUND

Automated image analysis enables quantitative measurement of steatosis in histological images. However, spatial heterogeneity of steatosis can make quantitative steatosis scores unreliable. To improve the reliability, we have developed novel scores that are "focused" on steatotic tissue areas.

METHODS

Focused scores use concepts of tile-based hotspot analysis in order to compute statistics about steatotic tissue areas in an objective way. We evaluated focused scores on three data sets of images of rodent liver sections exhibiting different amounts of dietary-induced steatosis. The same evaluation was conducted with the standard steatosis score computed by most image analysis methods.

RESULTS

The standard score reliably discriminated large differences in steatosis (intraclass correlation coefficient ICC = 0.86), but failed to discriminate small (ICC = 0.54) and very small (ICC = 0.14) differences. With an appropriate tile size, mean-based focused scores reliably discriminated large (ICC = 0.92), small (ICC = 0.86) and very small (ICC = 0.83) differences. Focused scores based on high percentiles showed promise in further improving the discrimination of very small differences (ICC = 0.93).

CONCLUSIONS

Focused scores enable reliable discrimination of small differences in steatosis in histological images. They are conceptually simple and straightforward to use in research studies.

摘要

背景

自动图像分析能够对组织学图像中的脂肪变性进行定量测量。然而,脂肪变性的空间异质性可能会使定量脂肪变性评分不可靠。为了提高可靠性,我们开发了一种新的评分方法,该方法“聚焦”于脂肪变性组织区域。

方法

聚焦评分使用基于图块的热点分析概念,以便客观地计算脂肪变性组织区域的统计数据。我们在三组显示不同程度饮食诱导脂肪变性的啮齿动物肝脏切片图像数据集上评估了聚焦评分。同时使用大多数图像分析方法计算的标准脂肪变性评分进行了相同的评估。

结果

标准评分能够可靠地区分脂肪变性的较大差异(组内相关系数ICC = 0.86),但无法区分较小(ICC = 0.54)和非常小(ICC = 0.14)的差异。在适当的图块大小下,基于均值的聚焦评分能够可靠地区分大(ICC = 0.92)、小(ICC = 0.86)和非常小(ICC = 0.83)的差异。基于高百分位数的聚焦评分在进一步提高对非常小差异的区分能力方面显示出前景(ICC = 0.93)。

结论

聚焦评分能够可靠地区分组织学图像中脂肪变性的微小差异。它们在概念上简单明了,便于在研究中使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcf/6146776/12b724e94dc7/13000_2018_753_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验