Darling Jessica, Abedin Nada, Ziegler Paul K, Gretser Steffen, Walczak Barbara, Barreiros Ana Paula, Schulze Falko, Reis Henning, Wild Peter J, Flinner Nadine
Dr. Senckenbergisches Institut für Pathologie, Universitätsklinikum, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Deutschland.
Medizinische Klinik 1, Universitätsklinikum, Goethe-Universität Frankfurt, Frankfurt am Main, Deutschland.
Pathologie (Heidelb). 2024 Mar;45(2):115-123. doi: 10.1007/s00292-024-01298-6. Epub 2024 Feb 21.
Metabolic dysfunction-associated steatotic liver disease (MASLD), or non-alcoholic fatty liver disease (NAFLD), is a common disease that is diagnosed through manual evaluation of liver biopsies, an assessment that is subject to high interobserver variability (IBV). IBV can be reduced using automated methods.
Many existing computer-based methods do not accurately reflect what pathologists evaluate in practice. The goal is to demonstrate how these differences impact the prediction of hepatic steatosis. Additionally, IBV complicates algorithm validation.
Forty tissue sections were analyzed to detect steatosis, nuclei, and fibrosis. Data generated from automated image processing were used to predict steatosis grades. To investigate IBV, 18 liver biopsies were evaluated by multiple observers.
Area-based approaches yielded more strongly correlated results than nucleus-based methods (⌀ Spearman rho [ρ] = 0.92 vs. 0.79). The inclusion of information regarding tissue composition reduced the average absolute error for both area- and nucleus-based predictions by 0.5% and 2.2%, respectively. Our final area-based algorithm, incorporating tissue structure information, achieved a high accuracy (80%) and strong correlation (⌀ Spearman ρ = 0.94) with manual evaluation.
The automatic and deterministic evaluation of steatosis can be improved by integrating information about tissue composition and can serve to reduce the influence of IBV.
代谢功能障碍相关脂肪性肝病(MASLD),即非酒精性脂肪性肝病(NAFLD),是一种常见疾病,通过对肝活检进行人工评估来诊断,而这种评估存在较高的观察者间变异性(IBV)。使用自动化方法可降低IBV。
许多现有的基于计算机的方法不能准确反映病理学家在实际中的评估情况。目标是证明这些差异如何影响肝脂肪变性的预测。此外,IBV使算法验证变得复杂。
分析40个组织切片以检测脂肪变性、细胞核和纤维化。利用自动图像处理生成的数据预测脂肪变性分级。为研究IBV,由多名观察者对18例肝活检进行评估。
基于面积的方法比基于细胞核的方法产生的相关性更强(斯皮尔曼相关系数[ρ]分别为0.92和0.79)。纳入有关组织组成的信息分别使基于面积和基于细胞核的预测的平均绝对误差降低了0.5%和2.2%。我们最终基于面积的算法结合组织结构信息,与人工评估相比具有较高的准确性(80%)和较强的相关性(斯皮尔曼ρ=0.94)。
通过整合有关组织组成的信息可改善脂肪变性的自动和确定性评估,并有助于减少IBV的影响。