Suppr超能文献

[肝脏活检定量评估中的自动化挑战:肝脂肪变性的自动定量]

[Challenges of automation in quantitative evaluation of liver biopsies : Automatic quantification of liver steatosis].

作者信息

Darling Jessica, Abedin Nada, Ziegler Paul K, Gretser Steffen, Walczak Barbara, Barreiros Ana Paula, Schulze Falko, Reis Henning, Wild Peter J, Flinner Nadine

机构信息

Dr. Senckenbergisches Institut für Pathologie, Universitätsklinikum, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Deutschland.

Medizinische Klinik 1, Universitätsklinikum, Goethe-Universität Frankfurt, Frankfurt am Main, Deutschland.

出版信息

Pathologie (Heidelb). 2024 Mar;45(2):115-123. doi: 10.1007/s00292-024-01298-6. Epub 2024 Feb 21.

Abstract

BACKGROUND

Metabolic dysfunction-associated steatotic liver disease (MASLD), or non-alcoholic fatty liver disease (NAFLD), is a common disease that is diagnosed through manual evaluation of liver biopsies, an assessment that is subject to high interobserver variability (IBV). IBV can be reduced using automated methods.

OBJECTIVES

Many existing computer-based methods do not accurately reflect what pathologists evaluate in practice. The goal is to demonstrate how these differences impact the prediction of hepatic steatosis. Additionally, IBV complicates algorithm validation.

MATERIALS AND METHODS

Forty tissue sections were analyzed to detect steatosis, nuclei, and fibrosis. Data generated from automated image processing were used to predict steatosis grades. To investigate IBV, 18 liver biopsies were evaluated by multiple observers.

RESULTS

Area-based approaches yielded more strongly correlated results than nucleus-based methods (⌀ Spearman rho [ρ] = 0.92 vs. 0.79). The inclusion of information regarding tissue composition reduced the average absolute error for both area- and nucleus-based predictions by 0.5% and 2.2%, respectively. Our final area-based algorithm, incorporating tissue structure information, achieved a high accuracy (80%) and strong correlation (⌀ Spearman ρ = 0.94) with manual evaluation.

CONCLUSION

The automatic and deterministic evaluation of steatosis can be improved by integrating information about tissue composition and can serve to reduce the influence of IBV.

摘要

背景

代谢功能障碍相关脂肪性肝病(MASLD),即非酒精性脂肪性肝病(NAFLD),是一种常见疾病,通过对肝活检进行人工评估来诊断,而这种评估存在较高的观察者间变异性(IBV)。使用自动化方法可降低IBV。

目的

许多现有的基于计算机的方法不能准确反映病理学家在实际中的评估情况。目标是证明这些差异如何影响肝脂肪变性的预测。此外,IBV使算法验证变得复杂。

材料与方法

分析40个组织切片以检测脂肪变性、细胞核和纤维化。利用自动图像处理生成的数据预测脂肪变性分级。为研究IBV,由多名观察者对18例肝活检进行评估。

结果

基于面积的方法比基于细胞核的方法产生的相关性更强(斯皮尔曼相关系数[ρ]分别为0.92和0.79)。纳入有关组织组成的信息分别使基于面积和基于细胞核的预测的平均绝对误差降低了0.5%和2.2%。我们最终基于面积的算法结合组织结构信息,与人工评估相比具有较高的准确性(80%)和较强的相关性(斯皮尔曼ρ=0.94)。

结论

通过整合有关组织组成的信息可改善脂肪变性的自动和确定性评估,并有助于减少IBV的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a5/10901975/fae6e5cd48ef/292_2024_1298_Fig1_HTML.jpg

相似文献

1
[Challenges of automation in quantitative evaluation of liver biopsies : Automatic quantification of liver steatosis].
Pathologie (Heidelb). 2024 Mar;45(2):115-123. doi: 10.1007/s00292-024-01298-6. Epub 2024 Feb 21.
3
A Novel Automatic Digital Algorithm that Accurately Quantifies Steatosis in NAFLD on Histopathological Whole-Slide Images.
Cytometry B Clin Cytom. 2019 Nov;96(6):521-528. doi: 10.1002/cyto.b.21790. Epub 2019 Jun 7.
4
5
Automated quantification and architectural pattern detection of hepatic fibrosis in NAFLD.
Ann Diagn Pathol. 2020 Aug;47:151518. doi: 10.1016/j.anndiagpath.2020.151518. Epub 2020 Apr 12.
6
Automatic quantification of lobular inflammation and hepatocyte ballooning in nonalcoholic fatty liver disease liver biopsies.
Hum Pathol. 2015 May;46(5):767-75. doi: 10.1016/j.humpath.2015.01.019. Epub 2015 Feb 19.
7
9
Automated quantification of renal interstitial fibrosis for computer-aided diagnosis: A comprehensive tissue structure segmentation method.
Comput Methods Programs Biomed. 2018 Mar;155:109-120. doi: 10.1016/j.cmpb.2017.12.004. Epub 2017 Dec 12.

本文引用的文献

1
Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials.
J Hepatol. 2020 Dec;73(6):1322-1332. doi: 10.1016/j.jhep.2020.06.025. Epub 2020 Jun 28.
3
Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images.
Med Image Anal. 2019 Dec;58:101563. doi: 10.1016/j.media.2019.101563. Epub 2019 Sep 18.
4
Focused scores enable reliable discrimination of small differences in steatosis.
Diagn Pathol. 2018 Sep 20;13(1):76. doi: 10.1186/s13000-018-0753-5.
6
A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology.
IEEE Trans Med Imaging. 2017 Jul;36(7):1550-1560. doi: 10.1109/TMI.2017.2677499. Epub 2017 Mar 6.
8
EASL Clinical Practice Guidelines: Liver transplantation.
J Hepatol. 2016 Feb;64(2):433-485. doi: 10.1016/j.jhep.2015.10.006. Epub 2015 Nov 17.
10
Hepatic steatosis estimated microscopically versus digital image analysis.
Liver Int. 2013 Jul;33(6):926-35. doi: 10.1111/liv.12162. Epub 2013 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验