Suppr超能文献

在事件相关电位分析中考虑刺激和参与者效应,以提高研究的可重复性。

Accounting for stimulus and participant effects in event-related potential analyses to increase the replicability of studies.

机构信息

Methodology and Data Analysis, Section of Psychology, FPSE, University of Geneva, Bd du Pont d'Arve 42, 1205 Genève, Switzerland; Cognitive Sciences, Department of Linguistics, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany.

Methodology and Data Analysis, Section of Psychology, FPSE, University of Geneva, Bd du Pont d'Arve 42, 1205 Genève, Switzerland.

出版信息

J Neurosci Methods. 2018 Nov 1;309:218-227. doi: 10.1016/j.jneumeth.2018.09.016. Epub 2018 Sep 16.

Abstract

BACKGROUND

Event-related potentials (ERPs) are increasingly used in cognitive science. With their high temporal resolution, they offer a unique window into cognitive processes and their time course. In this paper, we focus on ERP experiments whose designs involve selecting participants and stimuli amongst many. Recently, Westfall et al. (2017) highlighted the drastic consequences of not considering stimuli as a random variable in fMRI studies with such designs. Most ERP studies in cognitive psychology suffer from the same drawback.

NEW METHOD

We advocate the use of the Quasi-F or Mixed-effects models instead of the classical ANOVA/by-participant F1 statistic to analyze ERP datasets in which the dependent variable is reduced to one measure per trial (e.g., mean amplitude). We combine Quasi-F statistic and cluster mass tests to analyze datasets with multiple measures per trial. Doing so allows us to treat stimulus as a random variable while correcting for multiple comparisons.

RESULTS

Simulations show that the use of Quasi-F statistics with cluster mass tests allows maintaining the family wise error rates close to the nominal alpha level of 0.05.

COMPARISON WITH EXISTING METHODS

Simulations reveal that the classical ANOVA/F1 approach has an alarming FWER, demonstrating the superiority of models that treat both participant and stimulus as random variables, like the Quasi-F approach.

CONCLUSIONS

Our simulations question the validity of studies in which stimulus is not treated as a random variable. Failure to change the current standards feeds the replicability crisis.

摘要

背景

事件相关电位(ERPs)在认知科学中越来越多地被使用。由于它们具有较高的时间分辨率,因此为认知过程及其时间进程提供了独特的窗口。在本文中,我们专注于设计中涉及从众多参与者和刺激物中选择参与者和刺激物的 ERP 实验。最近,Westfall 等人(2017)强调了在具有此类设计的 fMRI 研究中不将刺激物视为随机变量所带来的严重后果。认知心理学中的大多数 ERP 研究都存在同样的缺陷。

新方法

我们提倡使用拟 F 或混合效应模型代替经典的 ANOVA/参与者 F1 统计量来分析 ERP 数据集,其中因变量被简化为每个试验的一个测量值(例如,平均振幅)。我们将拟 F 统计量和簇质量检验结合起来分析每个试验具有多个测量值的数据集。这样做可以使我们将刺激物视为随机变量,同时进行多次比较校正。

结果

模拟表明,使用拟 F 统计量和簇质量检验可以使组间错误率保持在接近名义 alpha 水平 0.05 的水平。

与现有方法的比较

模拟表明,经典的 ANOVA/F1 方法的 FWER 令人震惊,表明了将参与者和刺激物都视为随机变量的模型的优越性,例如拟 F 方法。

结论

我们的模拟对刺激物未被视为随机变量的研究的有效性提出了质疑。未能改变当前的标准加剧了可重复性危机。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验