Suppr超能文献

花粉外壁的非典型高模量。

The atypically high modulus of pollen exine.

机构信息

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA

出版信息

J R Soc Interface. 2018 Sep 19;15(146):20180533. doi: 10.1098/rsif.2018.0533.

Abstract

Sporopollenin, the polymer comprising the exine (outer solid shell) of pollen, is recognized as one of the most chemically and mechanically stable naturally occurring organic substances. The elastic modulus of sporopollenin is of great importance to understanding the adhesion, transport and protective functions of pollen grains. In addition, this fundamental mechanical property is of significant interest in using pollen exine as a material for drug delivery, reinforcing fillers, sensors and adhesives. Yet, the literature reports of the elastic modulus of sporopollenin are very limited. We provide the first report of the elastic modulus of sporopollenin from direct indentation of pollen particles of three plant species: ragweed (), pecan () and Kentucky bluegrass (). The modulus was determined with atomic force microscopy by using direct nanomechanical mapping of the pollen shell surface. The moduli were atypically high for non-crystalline organic biomaterials, with average values of 16 ± 2.5 GPa (ragweed), 9.5 ± 2.3 GPa (pecan) and 16 ± 4.0 GPa (Kentucky bluegrass). The amorphous pollen exine has a modulus exceeding known non-crystalline biomaterials, such as lignin (6.7 GPa) and actin (1.8 GPa). In addition to native pollen, we have investigated the effects of exposure to a common preparative base-acid chemical treatment and elevated humidity on the modulus. Base-acid treatment reduced the ragweed modulus by up to 58% and water vapour exposure at 90% relative humidity reduced the modulus by 54% (pecan) and 72% (Kentucky bluegrass). These results are in agreement with recently published estimates of the modulus of base-acid-treated ragweed pollen of 8 GPa from fitting to mechanical properties of ragweed pollen-epoxy composites.

摘要

孢粉素是构成花粉外壁(外层固体壳)的聚合物,被认为是化学和机械稳定性最高的天然有机物质之一。孢粉素的弹性模量对于理解花粉粒的粘附、传输和保护功能非常重要。此外,这种基本力学性能对于将花粉外壁用作药物输送、增强填料、传感器和粘合剂的材料具有重要意义。然而,有关孢粉素弹性模量的文献报道非常有限。我们首次报道了三种植物花粉的孢粉素弹性模量:豚草()、山核桃()和肯塔基蓝草()。通过直接纳米力学映射花粉壳表面,利用原子力显微镜确定了弹性模量。这些模量对于非晶态有机生物材料来说非常高,平均值分别为 16 ± 2.5 GPa(豚草)、9.5 ± 2.3 GPa(山核桃)和 16 ± 4.0 GPa(肯塔基蓝草)。无定形花粉外壁的模量超过了已知的非晶态生物材料,如木质素(6.7 GPa)和肌动蛋白(1.8 GPa)。除了天然花粉,我们还研究了暴露于常见的酸碱预处理化学物质和高湿度对模量的影响。酸碱处理使豚草的模量降低了 58%,而在 90%相对湿度下暴露于水蒸气使模量降低了 54%(山核桃)和 72%(肯塔基蓝草)。这些结果与最近发表的关于酸碱处理豚草花粉的模量估计值 8 GPa 一致,该估计值是通过对豚草花粉-环氧复合材料的力学性能进行拟合得到的。

相似文献

1
The atypically high modulus of pollen exine.
J R Soc Interface. 2018 Sep 19;15(146):20180533. doi: 10.1098/rsif.2018.0533.
2
Characterization of ragweed pollen adhesion to polyamides and polystyrene using atomic force microscopy.
Environ Sci Technol. 2009 Jun 15;43(12):4308-13. doi: 10.1021/es803422s.
3
Genetic regulation of sporopollenin synthesis and pollen exine development.
Annu Rev Plant Biol. 2011;62:437-60. doi: 10.1146/annurev-arplant-042809-112312.
4
Facile isolation and analysis of sporopollenin exine from bee pollen.
Sci Rep. 2021 May 11;11(1):9952. doi: 10.1038/s41598-021-87619-8.
5
Sporopollenin - Invincible biopolymer for sustainable biomedical applications.
Int J Biol Macromol. 2022 Dec 1;222(Pt B):2957-2965. doi: 10.1016/j.ijbiomac.2022.10.071. Epub 2022 Oct 13.
6
UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed).
J Photochem Photobiol B. 2011 Mar 2;102(3):209-17. doi: 10.1016/j.jphotobiol.2010.12.005. Epub 2010 Dec 21.
7
Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen.
Sci Rep. 2016 Jun 15;6:28017. doi: 10.1038/srep28017.
8
Demystifying and unravelling the molecular structure of the biopolymer sporopollenin.
Rapid Commun Mass Spectrom. 2020 May 30;34(10):e8740. doi: 10.1002/rcm.8740.
9
Pollen grains as a novel microcarrier for oral delivery of proteins.
Int J Pharm. 2018 Dec 1;552(1-2):352-359. doi: 10.1016/j.ijpharm.2018.10.016. Epub 2018 Oct 9.

引用本文的文献

2
Buzz pollination: investigations of pollen expulsion using the discrete element method.
J R Soc Interface. 2025 Jan;22(222):20240526. doi: 10.1098/rsif.2024.0526. Epub 2025 Jan 22.
3
Heterogeneity in Mechanical Properties of Plant Cell Walls.
Plants (Basel). 2024 Dec 20;13(24):3561. doi: 10.3390/plants13243561.
4
Hydration solids.
Nature. 2023 Jul;619(7970):500-505. doi: 10.1038/s41586-023-06144-y. Epub 2023 Jun 7.
5
Sporopollenin-inspired design and synthesis of robust polymeric materials.
Commun Chem. 2022 Sep 12;5(1):110. doi: 10.1038/s42004-022-00729-w.
6
Hollow pollen grains as scaffolding building blocks in bone tissue engineering.
Bioimpacts. 2022;12(3):183-193. doi: 10.34172/bi.2021.24. Epub 2021 Dec 18.
7
Purification of Hollow Sporopollenin Microcapsules from Sunflower and Chamomile Pollen Grains.
Polymers (Basel). 2021 Jun 25;13(13):2094. doi: 10.3390/polym13132094.
9
Mechanical design of apertures and the infolding of pollen grain.
Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26600-26607. doi: 10.1073/pnas.2011084117. Epub 2020 Oct 7.

本文引用的文献

1
From allergen to oral vaccine carrier: A new face of ragweed pollen.
Int J Pharm. 2018 Jul 10;545(1-2):286-294. doi: 10.1016/j.ijpharm.2018.05.003. Epub 2018 May 3.
2
Tunable multimodal adhesion of 3D, nanocrystalline CoFeO pollen replicas.
Bioinspir Biomim. 2017 Nov 6;12(6):066009. doi: 10.1088/1748-3190/aa7c89.
3
Ragweed pollen as an oral vaccine delivery system: Mechanistic insights.
J Control Release. 2017 Dec 28;268:416-426. doi: 10.1016/j.jconrel.2017.10.019. Epub 2017 Oct 17.
4
Adhesion Enhancements and Surface-Enhanced Raman Scattering Activity of Ag and Ag@SiO Nanoparticle Decorated Ragweed Pollen Microparticle Sensor.
ACS Appl Mater Interfaces. 2017 Jul 26;9(29):24804-24811. doi: 10.1021/acsami.6b15664. Epub 2017 Jul 17.
5
AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.
Carbohydr Polym. 2016 Oct 20;151:373-380. doi: 10.1016/j.carbpol.2016.05.042. Epub 2016 May 17.
6
QUANTITATIVE NANOMECHANICAL MAPPING OF MARINE DIATOM IN SEAWATER USING PEAK FORCE TAPPING ATOMIC FORCE MICROSCOPY(1).
J Phycol. 2012 Feb;48(1):174-85. doi: 10.1111/j.1529-8817.2011.01093.x. Epub 2011 Dec 14.
7
Pressure sensitive microparticle adhesion through biomimicry of the pollen-stigma interaction.
Soft Matter. 2016 Mar 21;12(11):2965-75. doi: 10.1039/c5sm02845k.
9
Contaminant adhesion (aerial/ground biofouling) on the skin of a gecko.
J R Soc Interface. 2015 Jul 6;12(108):20150318. doi: 10.1098/rsif.2015.0318.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验