Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556.
Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556.
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):10094-10099. doi: 10.1073/pnas.1800695115. Epub 2018 Sep 19.
Potent immunosuppressive mechanisms within the tumor microenvironment contribute to the resistance of aggressive human cancers to immune checkpoint blockade (ICB) therapy. One of the main mechanisms for myeloid-derived suppressor cells (MDSCs) to induce T cell tolerance is through secretion of reactive nitrogen species (RNS), which nitrates tyrosine residues in proteins involved in T cell function. However, so far very few nitrated proteins have been identified. Here, using a transgenic mouse model of prostate cancer and a syngeneic cell line model of lung cancer, we applied a nitroproteomic approach based on chemical derivation of 3-nitrotyrosine and identified that lymphocyte-specific protein tyrosine kinase (LCK), an initiating tyrosine kinase in the T cell receptor signaling cascade, is nitrated at Tyr394 by MDSCs. LCK nitration inhibits T cell activation, leading to reduced interleukin 2 (IL2) production and proliferation. In human T cells with defective endogenous LCK, wild type, but not nitrated LCK, rescues IL2 production. In the mouse model of castration-resistant prostate cancer (CRPC) by prostate-specific deletion of , , and , CRPC is resistant to an ICB therapy composed of antiprogrammed cell death 1 (PD1) and anticytotoxic-T lymphocyte-associated protein 4 (CTLA4) antibodies. However, we showed that ICB elicits strong anti-CRPC efficacy when combined with an RNS neutralizing agent. Together, these data identify a previously unknown mechanism of T cell inactivation by MDSC-induced protein nitration and illuminate a clinical path hypothesis for combining ICB with RNS-reducing agents in the treatment of CRPC.
肿瘤微环境中的强效免疫抑制机制导致侵袭性人类癌症对免疫检查点阻断 (ICB) 治疗产生耐药性。髓系来源的抑制细胞 (MDSCs) 诱导 T 细胞耐受的主要机制之一是通过活性氮物种 (RNS) 的分泌,该物质使参与 T 细胞功能的蛋白质中的酪氨酸残基硝化。然而,到目前为止,只有很少的硝化蛋白被鉴定出来。在这里,我们使用前列腺癌的转基因小鼠模型和肺癌的同源细胞系模型,应用基于 3-硝基酪氨酸化学衍生的硝基蛋白质组学方法,鉴定出淋巴细胞特异性酪氨酸激酶 (LCK),即 T 细胞受体信号级联中的起始酪氨酸激酶,被 MDSCs 硝化在 Tyr394。LCK 硝化抑制 T 细胞激活,导致白细胞介素 2 (IL2) 产生和增殖减少。在具有缺陷内源性 LCK 的人类 T 细胞中,野生型而非硝化型 LCK 可挽救 IL2 的产生。在由前列腺特异性缺失引起的去势抵抗性前列腺癌 (CRPC) 的小鼠模型中, 和 ,CRPC 对由抗程序性细胞死亡 1 (PD1) 和抗细胞毒性 T 淋巴细胞相关蛋白 4 (CTLA4) 抗体组成的 ICB 治疗具有抗性。然而,我们表明,当与 RNS 中和剂联合使用时,ICB 会引发强烈的抗 CRPC 疗效。总之,这些数据确定了 MDSC 诱导的蛋白质硝化导致 T 细胞失活的先前未知机制,并阐明了在治疗 CRPC 时将 ICB 与 RNS 还原剂联合使用的临床路径假说。