Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK.
Nature. 2018 Oct;562(7726):277-280. doi: 10.1038/s41586-018-0557-5. Epub 2018 Sep 19.
The CRISPR system provides adaptive immunity against mobile genetic elements in prokaryotes, using small CRISPR RNAs that direct effector complexes to degrade invading nucleic acids. Type III effector complexes were recently demonstrated to synthesize a novel second messenger, cyclic oligoadenylate, on binding target RNA. Cyclic oligoadenylate, in turn, binds to and activates ribonucleases and other factors-via a CRISPR-associated Rossman-fold domain-and thereby induces in the cell an antiviral state that is important for immunity. The mechanism of the 'off-switch' that resets the system is not understood. Here we identify the nuclease that degrades these cyclic oligoadenylate ring molecules. This 'ring nuclease' is itself a protein of the CRISPR-associated Rossman-fold family, and has a metal-independent mechanism that cleaves cyclic tetraadenylate rings to generate linear diadenylate species and switches off the antiviral state. The identification of ring nucleases adds an important insight to the CRISPR system.
CRISPR 系统利用能够靶向降解入侵核酸的小 CRISPR RNA 为原核生物提供适应性免疫,最近发现 III 型效应复合物在结合靶标 RNA 时会合成一种新型的第二信使——环寡聚腺苷酸。环寡聚腺苷酸通过与 CRISPR 相关的罗斯曼折叠结构域结合并激活核糖核酸酶和其他因子,从而诱导细胞进入一种对免疫很重要的抗病毒状态。然而,目前尚不清楚重置该系统的“关闭开关”的机制。本文中,我们鉴定了能够降解这些环寡聚腺苷酸环分子的核酸酶。该“环核酶”本身是一种 CRISPR 相关罗斯曼折叠家族的蛋白,具有一种无需金属离子的机制,能够切割环四腺苷酸环以生成线性二腺苷酸产物并关闭抗病毒状态。环核酶的鉴定为 CRISPR 系统提供了一个重要的认识。