Suppr超能文献

心脏神经嵴的转录组分析揭示了MafB的关键作用。

Transcriptome profiling of the cardiac neural crest reveals a critical role for MafB.

作者信息

Tani-Matsuhana Saori, Vieceli Felipe Monteleone, Gandhi Shashank, Inoue Kunio, Bronner Marianne E

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Dev Biol. 2018 Dec 1;444 Suppl 1(Suppl 1):S209-S218. doi: 10.1016/j.ydbio.2018.09.015. Epub 2018 Sep 17.

Abstract

The cardiac neural crest originates in the caudal hindbrain, migrates to the heart, and contributes to septation of the cardiac outflow tract and ventricles, an ability unique to this neural crest subpopulation. Here we have used a FoxD3 neural crest enhancer to isolate a pure population of cardiac neural crest cells for transcriptome analysis. This has led to the identification of transcription factors, signaling receptors/ligands, and cell adhesion molecules upregulated in the early migrating cardiac neural crest. We then functionally tested the role of one of the upregulated transcription factors, MafB, and found that it acts as a regulator of Sox10 expression specifically in the cardiac neural crest. Our results not only reveal the genome-wide profile of early migrating cardiac neural crest cells, but also provide molecular insight into what makes the cardiac neural crest unique.

摘要

心脏神经嵴起源于后脑尾部,迁移至心脏,并参与心脏流出道和心室的分隔,这是该神经嵴亚群独有的能力。在此,我们利用FoxD3神经嵴增强子分离出纯的心脏神经嵴细胞群体用于转录组分析。这使得我们鉴定出在早期迁移的心脏神经嵴中上调的转录因子、信号受体/配体和细胞黏附分子。然后,我们对上调的转录因子之一MafB的作用进行了功能测试,发现它 specifically在心脏神经嵴中作为Sox10表达的调节因子发挥作用。我们的结果不仅揭示了早期迁移的心脏神经嵴细胞的全基因组概况,还为使心脏神经嵴独特的因素提供了分子层面的见解。

相似文献

1
Transcriptome profiling of the cardiac neural crest reveals a critical role for MafB.
Dev Biol. 2018 Dec 1;444 Suppl 1(Suppl 1):S209-S218. doi: 10.1016/j.ydbio.2018.09.015. Epub 2018 Sep 17.
2
Identification of regulatory elements for MafB expression in the cardiac neural crest.
Cells Dev. 2021 Sep;167:203725. doi: 10.1016/j.cdev.2021.203725. Epub 2021 Jul 26.
3
The cardiac neural crest gene MafB ectopically directs CXCR4 expression in the trunk neural crest.
Dev Biol. 2023 Mar;495:1-7. doi: 10.1016/j.ydbio.2022.12.006. Epub 2022 Dec 21.
4
Reprogramming Axial Level Identity to Rescue Neural-Crest-Related Congenital Heart Defects.
Dev Cell. 2020 May 4;53(3):300-315.e4. doi: 10.1016/j.devcel.2020.04.005.
5
Tissue specific regulation of the chick Sox10E1 enhancer by different Sox family members.
Dev Biol. 2017 Feb 1;422(1):47-57. doi: 10.1016/j.ydbio.2016.12.004. Epub 2016 Dec 22.
6
A Sox10 enhancer element common to the otic placode and neural crest is activated by tissue-specific paralogs.
Development. 2011 Sep;138(17):3689-98. doi: 10.1242/dev.057836. Epub 2011 Jul 20.
8
Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3570-5. doi: 10.1073/pnas.0906596107. Epub 2010 Feb 5.
10
Cardiac neural crest is dispensable for outflow tract septation in Xenopus.
Development. 2011 May;138(10):2025-34. doi: 10.1242/dev.061614. Epub 2011 Apr 13.

引用本文的文献

3
Androgen-regulated drives cell migration via MMP11-dependent extracellular matrix remodeling in mice.
iScience. 2022 Nov 16;25(12):105609. doi: 10.1016/j.isci.2022.105609. eCollection 2022 Dec 22.
5
Single-cell transcriptomic landscape of cardiac neural crest cell derivatives during development.
EMBO Rep. 2021 Nov 4;22(11):e52389. doi: 10.15252/embr.202152389. Epub 2021 Sep 27.
6
Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells: Methods, Applications, and Considerations.
Circ Res. 2021 Mar 5;128(5):670-686. doi: 10.1161/CIRCRESAHA.120.318049. Epub 2021 Mar 4.
7
The Mafb cleft-associated variant H131Q is not required for palatogenesis in the mouse.
Dev Dyn. 2021 Oct;250(10):1463-1476. doi: 10.1002/dvdy.327. Epub 2021 Mar 27.
8
A single-plasmid approach for genome editing coupled with long-term lineage analysis in chick embryos.
Development. 2021 Apr 1;148(7). doi: 10.1242/dev.193565. Epub 2021 Apr 15.
9
A regulatory sub-circuit downstream of Wnt signaling controls developmental transitions in neural crest formation.
PLoS Genet. 2021 Jan 19;17(1):e1009296. doi: 10.1371/journal.pgen.1009296. eCollection 2021 Jan.
10
Cardiac Progenitor Cells.
Adv Exp Med Biol. 2021;1312:51-73. doi: 10.1007/5584_2020_594.

本文引用的文献

3
Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo.
Dev Biol. 2017 Dec 1;432(1):86-97. doi: 10.1016/j.ydbio.2017.08.036.
4
Reprogramming of avian neural crest axial identity and cell fate.
Science. 2016 Jun 24;352(6293):1570-3. doi: 10.1126/science.aaf2729.
5
HISAT: a fast spliced aligner with low memory requirements.
Nat Methods. 2015 Apr;12(4):357-60. doi: 10.1038/nmeth.3317. Epub 2015 Mar 9.
6
Dual developmental role of transcriptional regulator Ets1 in Xenopus cardiac neural crest vs. heart mesoderm.
Cardiovasc Res. 2015 Apr 1;106(1):67-75. doi: 10.1093/cvr/cvv043. Epub 2015 Feb 17.
7
Establishing neural crest identity: a gene regulatory recipe.
Development. 2015 Jan 15;142(2):242-57. doi: 10.1242/dev.105445.
8
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
10
Transcriptome analysis reveals novel players in the cranial neural crest gene regulatory network.
Genome Res. 2014 Feb;24(2):281-90. doi: 10.1101/gr.161182.113. Epub 2014 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验