Fernández-García Laura, Pérez-Rigueiro José, Martinez-Murillo Ricardo, Panetsos Fivos, Ramos Milagros, Guinea Gustavo V, González-Nieto Daniel
Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.
Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain.
Front Cell Neurosci. 2018 Sep 6;12:296. doi: 10.3389/fncel.2018.00296. eCollection 2018.
The restitution of damaged circuitry and functional remodeling of peri-injured areas constitute two main mechanisms for sustaining recovery of the brain after stroke. In this study, a silk fibroin-based biomaterial efficiently supports the survival of intracerebrally implanted mesenchymal stem cells (mSCs) and increases functional outcomes over time in a model of cortical stroke that affects the forepaw sensory and motor representations. We show that the functional mechanisms underlying recovery are related to a substantial preservation of cortical tissue in the first days after mSCs-polymer implantation, followed by delayed cortical plasticity that involved a progressive functional disconnection between the forepaw sensory (FLs) and caudal motor (cFLm) representations and an emergent sensory activity in peri-lesional areas belonging to cFLm. Our results provide evidence that mSCs integrated into silk fibroin hydrogels attenuate the cerebral damage after brain infarction inducing a delayed cortical plasticity in the peri-lesional tissue, this later a functional change described during spontaneous or training rehabilitation-induced recovery. This study shows that brain remapping and sustained recovery were experimentally favored using a stem cell-biomaterial-based approach.
受损神经回路的恢复以及损伤周边区域的功能重塑是中风后大脑持续恢复的两个主要机制。在本研究中,一种基于丝素蛋白的生物材料能有效支持脑内植入的间充质干细胞(mSCs)存活,并随着时间推移在影响前爪感觉和运动表征的皮质中风模型中改善功能结局。我们发现,恢复的功能机制与mSCs-聚合物植入后最初几天皮质组织的大量保留有关,随后是延迟的皮质可塑性,这涉及前爪感觉(FLs)和尾侧运动(cFLm)表征之间逐渐的功能分离,以及属于cFLm的损伤周边区域出现的感觉活动。我们的结果表明,整合到丝素蛋白水凝胶中的mSCs可减轻脑梗死后的脑损伤,在损伤周边组织诱导延迟的皮质可塑性,这是在自发或训练康复诱导的恢复过程中描述的一种功能变化。这项研究表明,使用基于干细胞-生物材料的方法在实验上有利于脑重塑和持续恢复。