Suppr超能文献

基于适配体寻找血浆和血清水样T的相关因素:对早期代谢失调和代谢综合征的意义

Aptamer-based search for correlates of plasma and serum water T: implications for early metabolic dysregulation and metabolic syndrome.

作者信息

Patel Vipulkumar, Dwivedi Alok K, Deodhar Sneha, Mishra Ina, Cistola David P

机构信息

1Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX 76107 USA.

2Center of Emphasis in Diabetes & Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905 USA.

出版信息

Biomark Res. 2018 Sep 17;6:28. doi: 10.1186/s40364-018-0143-x. eCollection 2018.

Abstract

BACKGROUND

Metabolic syndrome is a cluster of abnormalities that increases the risk for type 2 diabetes and atherosclerosis. Plasma and serum water T from benchtop nuclear magnetic resonance relaxometry are early, global and practical biomarkers for metabolic syndrome and its underlying abnormalities. In a prior study, water T was analyzed against ~ 130 strategically selected proteins and metabolites to identify associations with insulin resistance, inflammation and dyslipidemia. In the current study, the analysis was broadened ten-fold using a modified aptamer (SOMAmer) library, enabling an unbiased search for new proteins correlated with water T and thus, metabolic health.

METHODS

Water T measurements were recorded using fasting plasma and serum from non-diabetic human subjects. In parallel, plasma samples were analyzed using a SOMAscan assay that employed modified DNA aptamers to determine the relative concentrations of 1310 proteins. A multi-step statistical analysis was performed to identify the biomarkers most predictive of water T. The steps included Spearman rank correlation, followed by principal components analysis with variable clustering, random forests for biomarker selection, and regression trees for biomarker ranking.

RESULTS

The multi-step analysis unveiled five new proteins most predictive of water T: hepatocyte growth factor, receptor tyrosine kinase FLT3, bone sialoprotein 2, glucokinase regulatory protein and endothelial cell-specific molecule 1. Three of the five strongest predictors of water T have been previously implicated in cardiometabolic diseases. Hepatocyte growth factor has been associated with incident type 2 diabetes, and endothelial cell specific molecule 1, with atherosclerosis in subjects with diabetes. Glucokinase regulatory protein plays a critical role in hepatic glucose uptake and metabolism and is a drug target for type 2 diabetes. By contrast, receptor tyrosine kinase FLT3 and bone sialoprotein 2 have not been previously associated with metabolic conditions. In addition to the five most predictive biomarkers, the analysis unveiled other strong correlates of water T that would not have been identified in a hypothesis-driven biomarker search.

CONCLUSIONS

The identification of new proteins associated with water T demonstrates the value of this approach to biomarker discovery. It provides new insights into the metabolic significance of water T and the pathophysiology of metabolic syndrome.

摘要

背景

代谢综合征是一组异常情况,会增加患2型糖尿病和动脉粥样硬化的风险。台式核磁共振弛豫测量法测得的血浆和血清水T是代谢综合征及其潜在异常情况的早期、全面且实用的生物标志物。在先前的一项研究中,针对约130种经过策略性选择的蛋白质和代谢物分析了水T,以确定其与胰岛素抵抗、炎症和血脂异常的关联。在当前研究中,使用改良的适配体(SOMAmer)文库将分析范围扩大了十倍,从而能够无偏向地寻找与水T相关进而与代谢健康相关的新蛋白质。

方法

使用非糖尿病人类受试者的空腹血浆和血清记录水T测量值。同时,使用SOMAscan检测法分析血浆样本,该检测法采用改良的DNA适配体来确定1310种蛋白质的相对浓度。进行了多步骤统计分析以识别最能预测水T的生物标志物。步骤包括斯皮尔曼等级相关性分析,随后是具有变量聚类的主成分分析、用于生物标志物选择的随机森林分析以及用于生物标志物排名的回归树分析。

结果

多步骤分析揭示了五种最能预测水T的新蛋白质:肝细胞生长因子、受体酪氨酸激酶FLT3、骨唾液蛋白2、葡萄糖激酶调节蛋白和内皮细胞特异性分子1。水T的五个最强预测因子中有三个先前已被认为与心脏代谢疾病有关。肝细胞生长因子与2型糖尿病的发生有关,而内皮细胞特异性分子1与糖尿病患者的动脉粥样硬化有关。葡萄糖激酶调节蛋白在肝脏葡萄糖摄取和代谢中起关键作用,是2型糖尿病的药物靶点。相比之下,受体酪氨酸激酶FLT3和骨唾液蛋白2以前尚未与代谢状况相关联。除了这五个最具预测性的生物标志物外,该分析还揭示了水T的其他强相关因素,这些因素在假设驱动的生物标志物搜索中是无法识别的。

结论

与水T相关的新蛋白质的鉴定证明了这种生物标志物发现方法的价值。它为水T的代谢意义和代谢综合征的病理生理学提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48f/6142358/c4204243d7c9/40364_2018_143_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验