Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.
Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
Angiogenesis. 2019 Feb;22(1):167-183. doi: 10.1007/s10456-018-9648-z. Epub 2018 Sep 20.
Pericyte investment into new blood vessels is essential for vascular development such that mis-regulation within this phase of vessel formation can contribute to numerous pathologies including arteriovenous and cerebrovascular malformations. It is critical therefore to illuminate how angiogenic signaling pathways intersect to regulate pericyte migration and investment. Here, we disrupted vascular endothelial growth factor-A (VEGF-A) signaling in ex vivo and in vitro models of sprouting angiogenesis, and found pericyte coverage to be compromised during VEGF-A perturbations. Pericytes had little to no expression of VEGF receptors, suggesting VEGF-A signaling defects affect endothelial cells directly but pericytes indirectly. Live imaging of ex vivo angiogenesis in mouse embryonic skin revealed limited pericyte migration during exposure to exogenous VEGF-A. During VEGF-A gain-of-function conditions, pericytes and endothelial cells displayed abnormal transcriptional changes within the platelet-derived growth factor-B (PDGF-B) and Notch pathways. To further test potential crosstalk between these pathways in pericytes, we stimulated embryonic pericytes with Notch ligands Delta-like 4 (Dll4) and Jagged-1 (Jag1) and found induction of Notch pathway activity but no changes in PDGF Receptor-β (Pdgfrβ) expression. In contrast, PDGFRβ protein levels decreased with mis-regulated VEGF-A activity, observed in the effects on full-length PDGFRβ and a truncated PDGFRβ isoform generated by proteolytic cleavage or potentially by mRNA splicing. Overall, these observations support a model in which, during the initial stages of vascular development, pericyte distribution and coverage are indirectly affected by endothelial cell VEGF-A signaling and the downstream regulation of PDGF-B-PDGFRβ dynamics, without substantial involvement of pericyte Notch signaling during these early stages.
周细胞对新血管的投资对于血管发育至关重要,因此,血管生成形成阶段的失调可能导致多种病理,包括动静脉畸形和脑血管畸形。因此,阐明血管生成信号通路如何相互作用以调节周细胞迁移和投资是至关重要的。在这里,我们在血管生成的体外和体内模型中干扰了血管内皮生长因子 A(VEGF-A)信号,发现周细胞覆盖在 VEGF-A 干扰时受到损害。周细胞几乎没有表达 VEGF 受体,这表明 VEGF-A 信号缺陷直接影响内皮细胞,但间接影响周细胞。在小鼠胚胎皮肤的体外血管生成的实时成像中,在外源 VEGF-A 暴露期间观察到周细胞迁移有限。在 VEGF-A 功能获得条件下,周细胞和内皮细胞在血小板衍生生长因子 B(PDGF-B)和 Notch 途径中显示出异常的转录变化。为了进一步测试 Notch 通路在周细胞中的潜在串扰,我们用 Notch 配体 Delta-like 4(Dll4)和 Jagged-1(Jag1)刺激胚胎周细胞,发现 Notch 通路活性诱导,但 PDGF 受体-β(Pdgfrβ)表达没有变化。相比之下,PDGFRβ 蛋白水平随着 VEGF-A 活性的失调而下降,这在全长 PDGFRβ 和由蛋白水解切割或可能由 mRNA 剪接产生的截断 PDGFRβ 同工型的作用中观察到。总的来说,这些观察结果支持这样一种模型,即在血管发育的初始阶段,周细胞的分布和覆盖间接受到内皮细胞 VEGF-A 信号和 PDGF-B-PDGFRβ 动力学的下游调节的影响,而在这些早期阶段,周细胞的 Notch 信号没有实质性参与。