Suppr超能文献

脂质 G 蛋白偶联受体的新兴结构生物学。

Emerging structural biology of lipid G protein-coupled receptors.

机构信息

Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, 90089.

出版信息

Protein Sci. 2019 Feb;28(2):292-304. doi: 10.1002/pro.3509.

Abstract

The first crystal structure of a G protein-coupled receptor (GPCR) was that of the bovine rhodopsin, solved in 2000, and is a light receptor within retina rode cells that enables vision by transducing a conformational signal from the light-induced isomerization of retinal covalently bound to the receptor. More than 7 years after this initial discovery and following more than 20 years of technological developments in GPCR expression, stabilization, and crystallography, the high-resolution structure of the adrenaline binding β -adrenergic receptor, a ligand diffusible receptor, was discovered. Since then, high-resolution structures of more than 53 unique GPCRs have been determined leading to a significant improvement in our understanding of the basic mechanisms of ligand-binding and ligand-mediated receptor activation that revolutionized the field of structural molecular pharmacology of GPCRs. Recently, several structures of eight unique lipid-binding receptors, one of the most difficult GPCR families to study, have been reported. This review presents the outstanding structural and pharmacological features that have emerged from these new lipid receptor structures. The impact of these findings goes beyond mechanistic insights, providing evidence of the fundamental role of GPCRs in the physiological integration of the lipid signaling system, and highlighting the importance of sustained research into the structural biology of GPCRs for the development of new therapeutics targeting lipid receptors.

摘要

第一个 G 蛋白偶联受体 (GPCR) 的晶体结构是牛视紫红质的结构,于 2000 年被解析,它是视网膜棒状细胞中的一种光受体,通过将光诱导的视黄醛与受体的共价结合的异构化引起的构象信号转导来实现视觉。在这一初步发现之后的 7 年多时间里,经过 20 多年的 GPCR 表达、稳定化和晶体学技术发展,可扩散配体的肾上腺素结合β-肾上腺素能受体的高分辨率结构被发现。从那时起,已经确定了超过 53 种独特的 GPCR 的高分辨率结构,这极大地促进了我们对配体结合和配体介导的受体激活基本机制的理解,从而彻底改变了 GPCR 的结构分子药理学领域。最近,已经报道了八个独特的脂质结合受体的几个结构,这是最难研究的 GPCR 家族之一。本文综述了这些新的脂质受体结构中出现的突出的结构和药理学特征。这些发现的影响超出了机制方面的见解,为 GPCR 在脂质信号系统的生理整合中的基本作用提供了证据,并强调了持续研究 GPCR 的结构生物学对于开发针对脂质受体的新型治疗方法的重要性。

相似文献

1
Emerging structural biology of lipid G protein-coupled receptors.
Protein Sci. 2019 Feb;28(2):292-304. doi: 10.1002/pro.3509.
2
Relevance of rhodopsin studies for GPCR activation.
Biochim Biophys Acta. 2014 May;1837(5):674-82. doi: 10.1016/j.bbabio.2013.09.002. Epub 2013 Sep 13.
3
G protein-coupled receptors--recent advances.
Acta Biochim Pol. 2012;59(4):515-29. Epub 2012 Dec 18.
4
Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
J Mol Biol. 2008 Oct 3;382(2):539-55. doi: 10.1016/j.jmb.2008.06.084. Epub 2008 Jul 7.
5
Efficiency of Homology Modeling Assisted Molecular Docking in G-protein Coupled Receptors.
Curr Top Med Chem. 2021;21(4):269-294. doi: 10.2174/1568026620666200908165250.
6
X-ray structure breakthroughs in the GPCR transmembrane region.
Biochem Pharmacol. 2009 Jul 1;78(1):11-20. doi: 10.1016/j.bcp.2009.02.012. Epub 2009 Feb 27.
7
The impact of cryo-EM on determining allosteric modulator-bound structures of G protein-coupled receptors.
Curr Opin Struct Biol. 2023 Apr;79:102560. doi: 10.1016/j.sbi.2023.102560. Epub 2023 Feb 26.
8
Molecular signatures of G-protein-coupled receptors.
Nature. 2013 Feb 14;494(7436):185-94. doi: 10.1038/nature11896.
9
Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
Biochemistry. 2008 Oct 21;47(42):11013-23. doi: 10.1021/bi800891r. Epub 2008 Sep 27.
10
GPCR crystal structures: Medicinal chemistry in the pocket.
Bioorg Med Chem. 2015 Jul 15;23(14):3880-906. doi: 10.1016/j.bmc.2014.12.034. Epub 2014 Dec 24.

引用本文的文献

1
Optimization of the prostaglandin F2α receptor for structural biology.
PLoS One. 2025 Jul 18;20(7):e0320114. doi: 10.1371/journal.pone.0320114. eCollection 2025.
2
Structural insights into lipid chain-length selectivity and allosteric regulation of FFA2.
Nat Commun. 2025 Mar 26;16(1):2809. doi: 10.1038/s41467-025-57983-4.
3
Bitter taste receptor activation by cholesterol and an intracellular tastant.
Nature. 2024 Apr;628(8008):664-671. doi: 10.1038/s41586-024-07253-y. Epub 2024 Apr 10.
4
Analytical challenges in omics research on asthma and allergy: A National Institute of Allergy and Infectious Diseases workshop.
J Allergy Clin Immunol. 2024 Apr;153(4):954-968. doi: 10.1016/j.jaci.2024.01.014. Epub 2024 Jan 29.
5
The Leu/Val Side Chain of Cannabinoid Receptors Regulates the Binding Mode of the Alkyl Chain of Δ-Tetrahydrocannabinol.
J Chem Inf Model. 2023 Sep 25;63(18):5927-5935. doi: 10.1021/acs.jcim.3c01054. Epub 2023 Aug 29.
7
Analysis of the mechanism of propagated sensation along meridians based on gene expression profiles.
J Tradit Complement Med. 2023 Jan 6;13(3):236-244. doi: 10.1016/j.jtcme.2023.01.004. eCollection 2023 May.
8
Covalent cannabinoid receptor ligands - structural insight and selectivity challenges.
RSC Med Chem. 2022 Apr 4;13(5):497-510. doi: 10.1039/d2md00006g. eCollection 2022 May 25.
9
Structures of oxysterol sensor EBI2/GPR183, a key regulator of the immune response.
Structure. 2022 Jul 7;30(7):1016-1024.e5. doi: 10.1016/j.str.2022.04.006. Epub 2022 May 9.

本文引用的文献

1
Crystal structure of misoprostol bound to the labor inducer prostaglandin E receptor.
Nat Chem Biol. 2019 Jan;15(1):11-17. doi: 10.1038/s41589-018-0160-y. Epub 2018 Dec 3.
2
Mechanisms of signalling and biased agonism in G protein-coupled receptors.
Nat Rev Mol Cell Biol. 2018 Oct;19(10):638-653. doi: 10.1038/s41580-018-0049-3.
3
Structural insights into G-protein-coupled receptor allostery.
Nature. 2018 Jul;559(7712):45-53. doi: 10.1038/s41586-018-0259-z. Epub 2018 Jul 4.
4
Structure of the adenosine-bound human adenosine A receptor-G complex.
Nature. 2018 Jun;558(7711):559-563. doi: 10.1038/s41586-018-0236-6. Epub 2018 Jun 20.
5
Structural basis for signal recognition and transduction by platelet-activating-factor receptor.
Nat Struct Mol Biol. 2018 Jun;25(6):488-495. doi: 10.1038/s41594-018-0068-y. Epub 2018 May 28.
6
Structural basis for GPR40 allosteric agonism and incretin stimulation.
Nat Commun. 2018 Apr 25;9(1):1645. doi: 10.1038/s41467-017-01240-w.
7
A Possible Role for Platelet-Activating Factor Receptor in Amyotrophic Lateral Sclerosis Treatment.
Front Neurol. 2018 Feb 6;9:39. doi: 10.3389/fneur.2018.00039. eCollection 2018.
8
Structure and dynamics of GPCR signaling complexes.
Nat Struct Mol Biol. 2018 Jan;25(1):4-12. doi: 10.1038/s41594-017-0011-7. Epub 2018 Jan 8.
9
Na-mimicking ligands stabilize the inactive state of leukotriene B receptor BLT1.
Nat Chem Biol. 2018 Mar;14(3):262-269. doi: 10.1038/nchembio.2547. Epub 2018 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验