Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil.
Departments of Chemistry and Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, United States.
Biosens Bioelectron. 2018 Dec 15;121:281-286. doi: 10.1016/j.bios.2018.09.011. Epub 2018 Sep 5.
MWCNT-COOH, TEMPO-modified linear poly(ethylenimine), and alcohol (ADH) and aldehyde (AldDH) dehydrogenase immobilization on electrode surfaces yields a hybrid, tri-catalytic architecture that can catalyze complete ethanol electro-oxidation. The chromatographic results obtained for the tri-catalytic hybrid electrode system show that ethanol is totally oxidized to CO after 12 h of electrolysis, confirming that organic oxidation catalysts combined with enzymatic catalysts enable collection of up to 12 electrons from ethanol. The Faradaic efficiency lies above 60% for all of the electrode systems investigated herein. Overall, this study illustrates that surface-immobilized, polymer hydrogel-based hybrid multi-catalytic systems exhibit high oxidation rates and constitute a simple methodology with useful application in the development of enzymatic biofuel cells.
MWCNT-COOH、TEMPO 修饰的线性聚(乙二胺)以及醇(ADH)和醛(AldDH)脱氢酶固定在电极表面上,得到一种可以催化完全乙醇电氧化的混合三催化结构。对三催化混合电极体系的色谱结果表明,在 12 小时的电解后,乙醇完全氧化为 CO,证实了有机氧化催化剂与酶催化剂的结合能够从乙醇中收集多达 12 个电子。在所研究的所有电极体系中,法拉第效率均高于 60%。总的来说,这项研究表明,基于聚合物水凝胶的表面固定化混合多催化体系表现出高氧化速率,构成了一种简单的方法,在酶生物燃料电池的开发中具有有用的应用。