Suppr超能文献

无线供电物联网系统中的资源分配:基于均值场Stackelberg 博弈的方法。

Resource Allocation in Wireless Powered IoT System: A Mean Field Stackelberg Game-Based Approach.

机构信息

Department of Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Institute of Telecommunication Satellite, China Academy of Space Technology, Beijing 100081, China.

出版信息

Sensors (Basel). 2018 Sep 20;18(10):3173. doi: 10.3390/s18103173.

Abstract

The IoT system has become a significant component of next generation networks, and drawn a lot of research interest in academia and industry. As the sensor nodes in the IoT system are always battery-limited devices, the power control problem is a serious problem in the IoT system which needs to be solved. In this paper, we research the resource allocation in the wireless powered IoT system, which includes one hybrid access point (HAP) and many wireless sensor nodes, to obtain the optimal power level for information transmission and energy transfer simultaneously. The relationship between the HAP and the sensor nodes are formulated as the Stackelberg game, and the dynamic variations of the energy for both the HAP and IoT devices are formulated through the dynamic game with mean field control. Then the power control in the wireless powered IoT system is formulated as a mean field Stackelberg game model. We aim to minimize the transmission cost for each sensor node based on optimally power resource allocation. Meanwhile, we attempt to minimize the energy transfer cost based on power control. As a result, the optimal solutions based on the mean field control of the sensor nodes and the HAP are achieved through dynamic programming theory and the law of large numbers, and ε -Nash equilibriums can be obtained. The energy variations for both the sensor nodes and HAP after the control of resource allocation based on the proposed approach are verified based on the simulation results.

摘要

物联网系统已成为下一代网络的重要组成部分,在学术界和工业界引起了广泛关注。由于物联网系统中的传感器节点通常是电池供电的设备,因此功率控制问题是物联网系统中需要解决的一个严重问题。在本文中,我们研究了包括一个混合接入点(HAP)和多个无线传感器节点的无线供电物联网系统中的资源分配问题,以同时获得信息传输和能量传输的最佳功率水平。HAP 和传感器节点之间的关系被制定为Stackelberg 博弈,HAP 和物联网设备的能量动态变化通过具有均值场控制的动态博弈来制定。然后,将无线供电物联网系统中的功率控制制定为均值场 Stackelberg 博弈模型。我们的目标是在最优的功率资源分配的基础上,最小化每个传感器节点的传输成本。同时,我们试图通过功率控制来最小化能量传输成本。结果,通过动态规划理论和大数定律,实现了基于传感器节点和 HAP 的均值场控制的最优解,并获得了 ε-Nash 均衡。基于所提出的方法进行资源分配后的能量变化通过仿真结果得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/894f/6210748/17aeee83312e/sensors-18-03173-g001.jpg

相似文献

1
Resource Allocation in Wireless Powered IoT System: A Mean Field Stackelberg Game-Based Approach.
Sensors (Basel). 2018 Sep 20;18(10):3173. doi: 10.3390/s18103173.
3
Stackelberg Dynamic Game-Based Resource Allocation in Threat Defense for Internet of Things.
Sensors (Basel). 2018 Nov 21;18(11):4074. doi: 10.3390/s18114074.
6
Price-Based Resource Allocation in Wireless Power Transfer-Enabled Massive MIMO Networks.
Sensors (Basel). 2019 Jul 26;19(15):3298. doi: 10.3390/s19153298.
7
Resource Allocation in Cognitive Radio Wireless Sensor Networks with Energy Harvesting.
Sensors (Basel). 2019 Nov 22;19(23):5115. doi: 10.3390/s19235115.
8
Plant Microbial Fuel Cells⁻Based Energy Harvester System for Self-powered IoT Applications.
Sensors (Basel). 2019 Mar 20;19(6):1378. doi: 10.3390/s19061378.
9
Game Theoretic Solution for Power Management in IoT-Based Wireless Sensor Networks.
Sensors (Basel). 2019 Sep 5;19(18):3835. doi: 10.3390/s19183835.
10
Optimal Power Control in Wireless Powered Sensor Networks: A Dynamic Game-Based Approach.
Sensors (Basel). 2017 Mar 9;17(3):547. doi: 10.3390/s17030547.

引用本文的文献

2
Energy Efficient Resource Allocation for M2M Devices in 5G.
Sensors (Basel). 2019 Apr 17;19(8):1830. doi: 10.3390/s19081830.

本文引用的文献

2
On the Probabilistic Deployment of Smart Grid Networks in TV White Space.
Sensors (Basel). 2016 May 10;16(5):671. doi: 10.3390/s16050671.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验