Suppr超能文献

基于物联网的无线传感器网络中的电源管理博弈论解决方案。

Game Theoretic Solution for Power Management in IoT-Based Wireless Sensor Networks.

机构信息

Institute of Computing, Kohat University of Science and Technology, Kohat 26000, Pakistan.

Department of Physics, Kohat University of Science and Technology, Kohat 26000, Pakistan.

出版信息

Sensors (Basel). 2019 Sep 5;19(18):3835. doi: 10.3390/s19183835.

Abstract

Internet of things (IoT) is a very important research area, having many applications such as smart cities, intelligent transportation system, tracing, and smart homes. The underlying technology for IoT are wireless sensor networks (WSN). The selection of cluster head (CH) is significant as a part of the WSN's optimization in the context of energy consumption. In WSNs, the nodes operate on a very limited energy source, therefore, the routing protocols designed must meet the optimal utilization of energy consumption in such networks. Evolutionary games can be designed to meet this aspect by providing an adequately efficient CH selection mechanism. In such types of mechanisms, the network nodes are considered intelligent and independent to select their own strategies. However, the existing mechanisms do not consider a combination of many possible parameters associated with the smart nodes in WSNs, such as remaining energy, selfishness, hop-level, density, and degree of connectivity. In our work, we designed an evolutionary game-based approach for CH selection, combined with some vital parameters associated with sensor nodes and the entire networks. The nodes are assumed to be smart, therefore, the aspect of being selfish is also addressed in this work. The simulation results indicate that our work performs much better than typical evolutionary game-based approaches.

摘要

物联网(IoT)是一个非常重要的研究领域,有许多应用,如智慧城市、智能交通系统、跟踪和智能家居。物联网的基础技术是无线传感器网络(WSN)。在 WSN 中,节点的能量来源非常有限,因此,设计的路由协议必须满足网络中能量消耗的最佳利用。进化博弈可以通过提供足够高效的 CH 选择机制来满足这一方面。在这种类型的机制中,网络节点被认为是智能和独立的,可以选择自己的策略。然而,现有的机制并没有考虑与 WSN 中的智能节点相关的许多可能参数的组合,如剩余能量、自私性、跳级、密度和连通度。在我们的工作中,我们设计了一种基于进化博弈的 CH 选择方法,结合了与传感器节点和整个网络相关的一些重要参数。假设节点是智能的,因此,在这项工作中还解决了自私的问题。仿真结果表明,我们的工作比典型的基于进化博弈的方法表现要好得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9699/6766995/5d21a4a106d1/sensors-19-03835-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验