Suppr超能文献

基于功能磁共振成像中随机神经网络聚类的阿尔茨海默病分析

Analysis of Alzheimer's Disease Based on the Random Neural Network Cluster in fMRI.

作者信息

Bi Xia-An, Jiang Qin, Sun Qi, Shu Qing, Liu Yingchao

机构信息

College of Information Science and Engineering, Hunan Normal University, Changsha, China.

出版信息

Front Neuroinform. 2018 Sep 7;12:60. doi: 10.3389/fninf.2018.00060. eCollection 2018.

Abstract

As Alzheimer's disease (AD) is featured with degeneration and irreversibility, the diagnosis of AD at early stage is important. In recent years, some researchers have tried to apply neural network (NN) to classify AD patients from healthy controls (HC) based on functional MRI (fMRI) data. But most study focus on a single NN and the classification accuracy was not high. Therefore, this paper used the random neural network cluster which was composed of multiple NNs to improve classification performance. Sixty one subjects (25 AD and 36 HC) were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. This method not only could be used in the classification, but also could be used for feature selection. Firstly, we chose Elman NN from five types of NNs as the optimal base classifier of random neural network cluster based on the results of feature selection, and the accuracies of the random Elman neural network cluster could reach to 92.31% which was the highest and stable. Then we used the random Elman neural network cluster to select significant features and these features could be used to find out the abnormal regions. Finally, we found out 23 abnormal regions such as the precentral gyrus, the frontal gyrus and supplementary motor area. These results fully show that the random neural network cluster is worthwhile and meaningful for the diagnosis of AD.

摘要

由于阿尔茨海默病(AD)具有退行性和不可逆性,早期诊断AD很重要。近年来,一些研究人员试图应用神经网络(NN)基于功能磁共振成像(fMRI)数据对AD患者与健康对照(HC)进行分类。但大多数研究集中在单个神经网络上,分类准确率不高。因此,本文使用由多个神经网络组成的随机神经网络簇来提高分类性能。从阿尔茨海默病神经影像倡议(ADNI)数据集中获取了61名受试者(25名AD患者和36名HC)。该方法不仅可用于分类,还可用于特征选择。首先,基于特征选择结果,从五种类型的神经网络中选择埃尔曼神经网络作为随机神经网络簇的最优基础分类器,随机埃尔曼神经网络簇的准确率可达92.31%,为最高且稳定。然后我们使用随机埃尔曼神经网络簇来选择显著特征,这些特征可用于找出异常区域。最后,我们找出了23个异常区域,如中央前回、额回和辅助运动区。这些结果充分表明随机神经网络簇对AD的诊断是值得且有意义的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bfe/6137384/4af052f9365a/fninf-12-00060-g001.jpg

相似文献

1
Analysis of Alzheimer's Disease Based on the Random Neural Network Cluster in fMRI.
Front Neuroinform. 2018 Sep 7;12:60. doi: 10.3389/fninf.2018.00060. eCollection 2018.
2
The Diagnosis of Autism Spectrum Disorder Based on the Random Neural Network Cluster.
Front Hum Neurosci. 2018 Jun 26;12:257. doi: 10.3389/fnhum.2018.00257. eCollection 2018.
3
Random support vector machine cluster analysis of resting-state fMRI in Alzheimer's disease.
PLoS One. 2018 Mar 23;13(3):e0194479. doi: 10.1371/journal.pone.0194479. eCollection 2018.
5
Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease.
Biomed Tech (Berl). 2018 Jul 26;63(4):427-437. doi: 10.1515/bmt-2016-0239.
7
Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks.
Comput Med Imaging Graph. 2018 Dec;70:101-110. doi: 10.1016/j.compmedimag.2018.09.009. Epub 2018 Oct 2.
8
RNN-based longitudinal analysis for diagnosis of Alzheimer's disease.
Comput Med Imaging Graph. 2019 Apr;73:1-10. doi: 10.1016/j.compmedimag.2019.01.005. Epub 2019 Jan 26.
10
Classification of Alzheimer's Disease Using Whole Brain Hierarchical Network.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Mar-Apr;15(2):624-632. doi: 10.1109/TCBB.2016.2635144. Epub 2016 Dec 2.

引用本文的文献

3
Deep Learning-Based Ensembling Technique to Classify Alzheimer's Disease Stages Using Functional MRI.
J Healthc Eng. 2023 Nov 3;2023:6961346. doi: 10.1155/2023/6961346. eCollection 2023.
4
Project, toolkit, and database of neuroinformatics ecosystem: A summary of previous studies on "Frontiers in Neuroinformatics".
Front Neuroinform. 2022 Sep 26;16:902452. doi: 10.3389/fninf.2022.902452. eCollection 2022.
5
A Novel Key Features Screening Method Based on Extreme Learning Machine for Alzheimer's Disease Study.
Front Aging Neurosci. 2022 May 25;14:888575. doi: 10.3389/fnagi.2022.888575. eCollection 2022.
9
Detecting genetic associations with brain imaging phenotypes in Alzheimer's disease via a novel structured SCCA approach.
Med Image Anal. 2020 Apr;61:101656. doi: 10.1016/j.media.2020.101656. Epub 2020 Jan 23.

本文引用的文献

1
Random support vector machine cluster analysis of resting-state fMRI in Alzheimer's disease.
PLoS One. 2018 Mar 23;13(3):e0194479. doi: 10.1371/journal.pone.0194479. eCollection 2018.
2
Early identification of MCI converting to AD: a FDG PET study.
Eur J Nucl Med Mol Imaging. 2017 Nov;44(12):2042-2052. doi: 10.1007/s00259-017-3761-x. Epub 2017 Jun 29.
3
Donepezil Enhances Frontal Functional Connectivity in Alzheimer's Disease: A Pilot Study.
Dement Geriatr Cogn Dis Extra. 2016 Oct 21;6(3):518-528. doi: 10.1159/000450546. eCollection 2016 Sep-Dec.
4
Classification of CT brain images based on deep learning networks.
Comput Methods Programs Biomed. 2017 Jan;138:49-56. doi: 10.1016/j.cmpb.2016.10.007. Epub 2016 Oct 20.
6
Ensembles of Deep Learning Architectures for the Early Diagnosis of the Alzheimer's Disease.
Int J Neural Syst. 2016 Nov;26(7):1650025. doi: 10.1142/S0129065716500258. Epub 2016 Apr 4.
8
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network.
IEEE Trans Med Imaging. 2016 May;35(5):1207-1216. doi: 10.1109/TMI.2016.2535865. Epub 2016 Feb 29.
9
Principal component analysis: a review and recent developments.
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202. doi: 10.1098/rsta.2015.0202.
10
State-space model with deep learning for functional dynamics estimation in resting-state fMRI.
Neuroimage. 2016 Apr 1;129:292-307. doi: 10.1016/j.neuroimage.2016.01.005. Epub 2016 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验