Suppr超能文献

基于深度卷积神经网络的间质性肺疾病肺模式分类。

Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network.

出版信息

IEEE Trans Med Imaging. 2016 May;35(5):1207-1216. doi: 10.1109/TMI.2016.2535865. Epub 2016 Feb 29.

Abstract

Automated tissue characterization is one of the most crucial components of a computer aided diagnosis (CAD) system for interstitial lung diseases (ILDs). Although much research has been conducted in this field, the problem remains challenging. Deep learning techniques have recently achieved impressive results in a variety of computer vision problems, raising expectations that they might be applied in other domains, such as medical image analysis. In this paper, we propose and evaluate a convolutional neural network (CNN), designed for the classification of ILD patterns. The proposed network consists of 5 convolutional layers with 2 × 2 kernels and LeakyReLU activations, followed by average pooling with size equal to the size of the final feature maps and three dense layers. The last dense layer has 7 outputs, equivalent to the classes considered: healthy, ground glass opacity (GGO), micronodules, consolidation, reticulation, honeycombing and a combination of GGO/reticulation. To train and evaluate the CNN, we used a dataset of 14696 image patches, derived by 120 CT scans from different scanners and hospitals. To the best of our knowledge, this is the first deep CNN designed for the specific problem. A comparative analysis proved the effectiveness of the proposed CNN against previous methods in a challenging dataset. The classification performance ( ~ 85.5%) demonstrated the potential of CNNs in analyzing lung patterns. Future work includes, extending the CNN to three-dimensional data provided by CT volume scans and integrating the proposed method into a CAD system that aims to provide differential diagnosis for ILDs as a supportive tool for radiologists.

摘要

自动组织特征化是计算机辅助诊断(CAD)系统用于间质性肺病(ILDs)的最重要组成部分之一。尽管在这个领域已经进行了大量的研究,但这个问题仍然具有挑战性。深度学习技术最近在各种计算机视觉问题中取得了令人印象深刻的成果,这使得人们期望它们可以应用于其他领域,如医学图像分析。在本文中,我们提出并评估了一种用于ILD 模式分类的卷积神经网络(CNN)。所提出的网络由 5 个卷积层组成,卷积核大小为 2×2,激活函数为 LeakyReLU,随后是大小等于最终特征图大小的平均池化和 3 个密集层。最后一个密集层有 7 个输出,相当于考虑的类别:健康、磨玻璃影(GGO)、微结节、实变、网状影、蜂窝肺和 GGO/网状影的组合。为了训练和评估 CNN,我们使用了一个由 14696 个图像补丁组成的数据集,这些图像补丁是由来自不同扫描仪和医院的 120 次 CT 扫描得出的。据我们所知,这是第一个为特定问题设计的深度 CNN。对比分析证明了所提出的 CNN 在具有挑战性的数据集上相对于以前的方法的有效性。分类性能(~85.5%)表明了 CNN 在分析肺模式方面的潜力。未来的工作包括将 CNN 扩展到由 CT 体积扫描提供的三维数据,并将所提出的方法集成到 CAD 系统中,该系统旨在为 ILD 提供辅助诊断作为放射科医生的支持工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验