Suppr超能文献

基于遗传聚类随机森林的阿尔茨海默病海马亚区和基因检测

Hippocampal Subregion and Gene Detection in Alzheimer's Disease Based on Genetic Clustering Random Forest.

机构信息

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.

School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China.

出版信息

Genes (Basel). 2021 May 1;12(5):683. doi: 10.3390/genes12050683.

Abstract

The distinguishable subregions that compose the hippocampus are differently involved in functions associated with Alzheimer's disease (AD). Thus, the identification of hippocampal subregions and genes that classify AD and healthy control (HC) groups with high accuracy is meaningful. In this study, by jointly analyzing the multimodal data, we propose a novel method to construct fusion features and a classification method based on the random forest for identifying the important features. Specifically, we construct the fusion features using the gene sequence and subregions correlation to reduce the diversity in same group. Moreover, samples and features are selected randomly to construct a random forest, and genetic algorithm and clustering evolutionary are used to amplify the difference in initial decision trees and evolve the trees. The features in resulting decision trees that reach the peak classification are the important "subregion gene pairs". The findings verify that our method outperforms well in classification performance and generalization. Particularly, we identified some significant subregions and genes, such as hippocampus amygdala transition area (HATA), fimbria, parasubiculum and genes included and . These discoveries provide some new candidate genes for AD and demonstrate the contribution of hippocampal subregions and genes to AD.

摘要

组成海马体的可区分亚区在与阿尔茨海默病 (AD) 相关的功能中有着不同的参与。因此,识别海马亚区和基因,以高精度将 AD 组和健康对照组 (HC) 分类是有意义的。在这项研究中,我们通过联合分析多模态数据,提出了一种使用基因序列和亚区相关性构建融合特征的新方法,以及一种基于随机森林的分类方法来识别重要特征。具体来说,我们使用基因序列和亚区相关性构建融合特征,以减少同组之间的多样性。此外,我们随机选择样本和特征来构建随机森林,并使用遗传算法和聚类进化来放大初始决策树之间的差异并进化这些树。在达到峰值分类的决策树中的特征是重要的“亚区基因对”。研究结果验证了我们的方法在分类性能和泛化能力方面的优异表现。特别是,我们确定了一些重要的亚区和基因,如海马杏仁核过渡区 (HATA)、穹窿、副海马旁回和包含的基因 和 。这些发现为 AD 提供了一些新的候选基因,并证明了海马亚区和基因对 AD 的贡献。

相似文献

2
Research on Pathogenic Hippocampal Voxel Detection in Alzheimer's Disease Using Clustering Genetic Random Forest.
Front Psychiatry. 2022 Apr 7;13:861258. doi: 10.3389/fpsyt.2022.861258. eCollection 2022.
4
Multimodal Data Analysis of Alzheimer's Disease Based on Clustering Evolutionary Random Forest.
IEEE J Biomed Health Inform. 2020 Oct;24(10):2973-2983. doi: 10.1109/JBHI.2020.2973324. Epub 2020 Feb 11.
5
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.
Neuroimage. 2020 Mar;208:116459. doi: 10.1016/j.neuroimage.2019.116459. Epub 2019 Dec 16.
6
Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases.
Neuroimage. 2016 Nov 1;141:542-555. doi: 10.1016/j.neuroimage.2016.07.020. Epub 2016 Jul 15.
8
Hippocampal transcriptome-wide association study and neurobiological pathway analysis for Alzheimer's disease.
PLoS Genet. 2021 Feb 25;17(2):e1009363. doi: 10.1371/journal.pgen.1009363. eCollection 2021 Feb.
10
Relationship between Hippocampal Subfields and Category Cued Recall in AD and PDD: A Multimodal MRI Study.
Neuroscience. 2018 Feb 10;371:506-517. doi: 10.1016/j.neuroscience.2017.12.028. Epub 2017 Dec 29.

引用本文的文献

1
miR-137: A therapeutic candidate or a key molecular regulator in Alzheimer's disease?
J Alzheimers Dis Rep. 2025 Jun 25;9:25424823251352166. doi: 10.1177/25424823251352166. eCollection 2025 Jan-Dec.
2
Atrophy in subcortical gray matter in adult patients with moyamoya disease.
Neurol Sci. 2023 May;44(5):1709-1717. doi: 10.1007/s10072-022-06583-x. Epub 2023 Jan 9.

本文引用的文献

1
The diagnostic potential of multimodal neuroimaging measures in Parkinson's disease and atypical parkinsonism.
Brain Behav. 2020 Nov;10(11):e01808. doi: 10.1002/brb3.1808. Epub 2020 Oct 7.
2
Volumetric GWAS of medial temporal lobe structures identifies an ERC1 locus using ADNI high-resolution T2-weighted MRI data.
Neurobiol Aging. 2020 Nov;95:81-93. doi: 10.1016/j.neurobiolaging.2020.07.005. Epub 2020 Jul 14.
3
Multimodal Data Analysis of Alzheimer's Disease Based on Clustering Evolutionary Random Forest.
IEEE J Biomed Health Inform. 2020 Oct;24(10):2973-2983. doi: 10.1109/JBHI.2020.2973324. Epub 2020 Feb 11.
4
Regional imaging genetic enrichment analysis.
Bioinformatics. 2020 Apr 15;36(8):2554-2560. doi: 10.1093/bioinformatics/btz948.
5
Hippocampal pathology in amyotrophic lateral sclerosis: selective vulnerability of subfields and their associated projections.
Neurobiol Aging. 2019 Dec;84:178-188. doi: 10.1016/j.neurobiolaging.2019.07.019. Epub 2019 Sep 23.
6
Targeted genetic analysis of cerebral blood flow imaging phenotypes implicates the INPP5D gene.
Neurobiol Aging. 2019 Sep;81:213-221. doi: 10.1016/j.neurobiolaging.2019.06.003. Epub 2019 Jun 18.
7
Effects of early life adversity and FKBP5 genotype on hippocampal subfields volume in major depression.
J Affect Disord. 2019 Jun 1;252:152-159. doi: 10.1016/j.jad.2019.04.054. Epub 2019 Apr 9.
9
Analysis of Alzheimer's Disease Based on the Random Neural Network Cluster in fMRI.
Front Neuroinform. 2018 Sep 7;12:60. doi: 10.3389/fninf.2018.00060. eCollection 2018.
10
Identification of Alzheimer's Disease and Mild Cognitive Impairment Using Networks Constructed Based on Multiple Morphological Brain Features.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Oct;3(10):887-897. doi: 10.1016/j.bpsc.2018.06.004. Epub 2018 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验