Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14627;
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095.
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10287-10292. doi: 10.1073/pnas.1808335115. Epub 2018 Sep 24.
Hydrosphere interactions and alteration of the terrestrial crust likely played a critical role in shaping Earth's surface, and in promoting prebiotic reactions leading to life, before 4.03 Ga (the Hadean Eon). The identity of aqueously altered material strongly depends on lithospheric cycling of abundant and water-soluble elements such as Si and O. However, direct constraints that define the character of Hadean sedimentary material are absent because samples from this earliest eon are limited to detrital zircons (ZrSiO). Here we show that concurrent measurements of Si and O isotope ratios in Phanerozoic and detrital pre-3.0 Ga zircon constrain the composition of aqueously altered precursors incorporated into their source melts. Phanerozoic zircon from (S)edimentary-type rocks contain heterogeneous δO and δSi values consistent with assimilation of metapelitic material, distinct from the isotopic character of zircon from (I)gneous- and (A)norogenic-type rocks. The δO values of detrital Archean zircons are heterogeneous, although yield Si isotope compositions like mantle-derived zircon. Hadean crystals yield elevated δO values (vs. mantle zircon) and δSi values span almost the entire range observed for Phanerozoic samples. Coupled Si and O isotope data represent a constraint on Hadean weathering and sedimentary input into felsic melts including remelting of amphibolites possibly of basaltic origin, and fractional addition of chemical sediments, such as cherts and/or banded iron formations (BIFs) into source melts. That such sedimentary deposits were extensive enough to change the chemical signature of intracrustal melts suggests they may have been a suitable niche for (pre)biotic chemistry as early as 4.1 Ga.
水圈相互作用和陆地地壳的改变可能在塑造地球表面以及促进前生物反应导致生命方面发挥了关键作用,这发生在 40.3 亿年前(冥古宙)。水蚀变物质的特征强烈依赖于大量且易溶于水的元素(如 Si 和 O)在岩石圈中的循环。然而,由于来自这个最早的地质年代的样本仅限于碎屑锆石 (ZrSiO),因此缺乏可以直接确定冥古宙沉积物质特征的约束条件。在这里,我们表明,显生宙和碎屑前 3 亿年锆石的 Si 和 O 同位素比值的同时测量,约束了纳入其源熔体的水蚀变前体的组成。(S)沉积岩类型的显生宙锆石含有不均匀的 δO 和 δSi 值,这与变泥质物质的同化一致,与(I)火成岩和(A)造山岩类型的锆石的同位素特征明显不同。碎屑太古宙锆石的 δO 值是不均匀的,尽管具有类似于地幔衍生锆石的 Si 同位素组成。冥古宙晶体的 δO 值(相对于地幔锆石)升高,δSi 值跨越了几乎所有观察到的显生宙样品的范围。Si 和 O 同位素数据的耦合代表了对冥古宙风化和沉积输入长英质熔体的限制,包括可能源自玄武岩的角闪岩的再熔化,以及化学沉积物(如燧石和/或条带状铁建造)的分数添加到源熔体中。这些沉积层广泛到足以改变地壳内熔体的化学特征,这表明它们可能早在 41 亿年前就为(预)生命化学提供了合适的栖息地。