Wang Xiaolei, Tang Ming, Moyen Jeff, Wang Di, Kröner Alfred, Hawkesworth Chris, Xia Xiaoping, Xie Hangqiang, Anhaeusser Carl, Hofmann Axel, Li Junyong, Li Linsen
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
School of Earth and Space Sciences, Peking University, Beijing 100871, China.
Natl Sci Rev. 2021 Jul 30;9(3):nwab136. doi: 10.1093/nsr/nwab136. eCollection 2022 Mar.
The recycling of supracrustal materials, and in particular hydrated rocks, has a profound impact on mantle composition and thus on the formation of continental crust, because water modifies the physical properties of lithological systems and the mechanisms of partial melting and fractional fractionation. On the modern Earth, plate tectonics offers an efficient mechanism for mass transport from the Earth's surface to its interior, but how far this mechanism dates back in the Earth's history is still uncertain. Here, we use zircon oxygen (O) isotopes to track recycling of supracrustal materials into the magma sources of early Archean igneous suites from the Kaapvaal Craton, southern Africa. The mean O values of zircon from TTG (tonalite-trondhjemite-granodiorite) rocks abruptly increase at the Paleo-Mesoarchean boundary (ca. 3230 million years ago; Ma), from mantle zircon values of 5‰-6‰ to approaching 7.1‰, and this increase occurs in ≤3230 Ma rocks with elevated Dy/Yb ratios. The O enrichment is a unique signature of low-temperature water-rock interaction on the Earth's surface. Because the later phase was emplaced into the same crustal level as the older one and TTG magmas would derive from melting processes in the garnet stability field (>40 km depth), we suggest that this evident shift in TTG zircon O isotopic compositions records the onset of recycling of the mafic oceanic crust that underwent seawater hydrothermal alteration at low temperature. The onset of the enhanced recycling of supracrustal materials may also have developed elsewhere in other Archean cratons and reflects a significant change in the tectonic realm during craton formation and stabilization, which may be important processes for the operation of plate tectonics on early Earth.
表壳物质的再循环,尤其是水化岩石的再循环,对幔层成分进而对大陆地壳的形成具有深远影响,因为水会改变岩性系统的物理性质以及部分熔融和分离分馏的机制。在现代地球上,板块构造为物质从地球表面传输至内部提供了一种有效机制,但这种机制在地球历史中能追溯到多远仍不确定。在此,我们利用锆石氧(O)同位素来追踪表壳物质再循环进入南非卡普瓦尔克拉通太古宙早期火成岩套岩浆源的过程。来自TTG(英云闪长岩 - 奥长花岗岩 - 花岗闪长岩)岩石的锆石平均O值在古元古代 - 中元古代边界(约32.3亿年前;Ma)处突然增加,从地幔锆石值5‰ - 6‰升至接近7.1‰,且这种增加出现在Dy/Yb比值升高的≤3230 Ma岩石中。O富集是地球表面低温水 - 岩相互作用的独特标志。由于后期侵入体与早期侵入体处于同一地壳层位,且TTG岩浆源自石榴石稳定域(深度>40 km)的熔融过程,我们认为TTG锆石O同位素组成的这一明显变化记录了经历低温海水热液蚀变的镁铁质洋壳再循环的开始。表壳物质增强再循环的开始可能在其他太古宙克拉通的其他地方也已出现,反映了克拉通形成和稳定过程中构造领域的重大变化,这可能是早期地球板块构造运作的重要过程。