Suppr超能文献

使用深度神经网络解码框架满足脑机接口用户的性能期望。

Meeting brain-computer interface user performance expectations using a deep neural network decoding framework.

机构信息

Advanced Analytics, Battelle Memorial Institute, Columbus, OH, USA.

Department of Psychology, University of Virginia, Charlottesville, VA, USA.

出版信息

Nat Med. 2018 Nov;24(11):1669-1676. doi: 10.1038/s41591-018-0171-y. Epub 2018 Sep 24.

Abstract

Brain-computer interface (BCI) neurotechnology has the potential to reduce disability associated with paralysis by translating neural activity into control of assistive devices. Surveys of potential end-users have identified key BCI system features, including high accuracy, minimal daily setup, rapid response times, and multifunctionality. These performance characteristics are primarily influenced by the BCI's neural decoding algorithm, which is trained to associate neural activation patterns with intended user actions. Here, we introduce a new deep neural network decoding framework for BCI systems enabling discrete movements that addresses these four key performance characteristics. Using intracortical data from a participant with tetraplegia, we provide offline results demonstrating that our decoder is highly accurate, sustains this performance beyond a year without explicit daily retraining by combining it with an unsupervised updating procedure, responds faster than competing methods, and can increase functionality with minimal retraining by using a technique known as transfer learning. We then show that our participant can use the decoder in real-time to reanimate his paralyzed forearm with functional electrical stimulation (FES), enabling accurate manipulation of three objects from the grasp and release test (GRT). These results demonstrate that deep neural network decoders can advance the clinical translation of BCI technology.

摘要

脑机接口 (BCI) 神经技术有可能通过将神经活动转化为辅助设备的控制来减少与瘫痪相关的残疾。对潜在的终端用户进行的调查确定了关键的 BCI 系统特征,包括高精度、最小日常设置、快速响应时间和多功能性。这些性能特征主要受到 BCI 的神经解码算法的影响,该算法经过训练可将神经激活模式与预期的用户动作相关联。在这里,我们引入了一种新的用于 BCI 系统的深度神经网络解码框架,该框架能够实现离散运动,解决了这四个关键性能特征。我们使用一位四肢瘫痪参与者的皮质内数据提供了离线结果,证明我们的解码器具有高度准确性,通过将其与无监督更新过程相结合,无需明确的日常再训练即可保持此性能超过一年,响应速度比竞争方法更快,并且可以通过使用称为迁移学习的技术进行最小的再训练来增加功能。然后,我们表明,我们的参与者可以使用解码器实时用功能性电刺激 (FES) 重新激活他瘫痪的前臂,从而能够准确地从抓握和释放测试 (GRT) 中操纵三个物体。这些结果表明,深度神经网络解码器可以推进 BCI 技术的临床转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验