Suppr超能文献

使用支持向量机和深度神经网络解码运动意图对脑机接口性能权衡的特征描述

A Characterization of Brain-Computer Interface Performance Trade-Offs Using Support Vector Machines and Deep Neural Networks to Decode Movement Intent.

作者信息

Skomrock Nicholas D, Schwemmer Michael A, Ting Jordyn E, Trivedi Hemang R, Sharma Gaurav, Bockbrader Marcia A, Friedenberg David A

机构信息

Advanced Analytics and Health Research, Battelle Memorial Institute, Columbus, OH, United States.

Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, OH, United States.

出版信息

Front Neurosci. 2018 Oct 24;12:763. doi: 10.3389/fnins.2018.00763. eCollection 2018.

Abstract

Laboratory demonstrations of brain-computer interface (BCI) systems show promise for reducing disability associated with paralysis by directly linking neural activity to the control of assistive devices. Surveys of potential users have revealed several key BCI performance criteria for clinical translation of such a system. Of these criteria, high accuracy, short response latencies, and multi-functionality are three key characteristics directly impacted by the neural decoding component of the BCI system, the algorithm that translates neural activity into control signals. Building a decoder that simultaneously addresses these three criteria is complicated because optimizing for one criterion may lead to undesirable changes in the other criteria. Unfortunately, there has been little work to date to quantify how decoder design simultaneously affects these performance characteristics. Here, we systematically explore the trade-off between accuracy, response latency, and multi-functionality for discrete movement classification using two different decoding strategies-a support vector machine (SVM) classifier which represents the current state-of-the-art for discrete movement classification in laboratory demonstrations and a proposed deep neural network (DNN) framework. We utilized historical intracortical recordings from a human tetraplegic study participant, who imagined performing several different hand and finger movements. For both decoders, we found that response time increases (i.e., slower reaction) and accuracy decreases as the number of functions increases. However, we also found that both the increase of response times and the decline in accuracy with additional functions is less for the DNN than the SVM. We also show that data preprocessing steps can affect the performance characteristics of the two decoders in drastically different ways. Finally, we evaluated the performance of our tetraplegic participant using the DNN decoder in real-time to control functional electrical stimulation (FES) of his paralyzed forearm. We compared his performance to that of able-bodied participants performing the same task, establishing a quantitative target for ideal BCI-FES performance on this task. Cumulatively, these results help quantify BCI decoder performance characteristics relevant to potential users and the complex interactions between them.

摘要

脑机接口(BCI)系统的实验室演示表明,通过将神经活动与辅助设备的控制直接联系起来,有望减少与瘫痪相关的残疾。对潜在用户的调查揭示了此类系统临床转化的几个关键BCI性能标准。在这些标准中,高精度、短响应延迟和多功能性是直接受BCI系统神经解码组件影响的三个关键特性,该算法将神经活动转化为控制信号。构建一个同时满足这三个标准的解码器很复杂,因为针对一个标准进行优化可能会导致其他标准出现不理想的变化。不幸的是,迄今为止几乎没有工作来量化解码器设计如何同时影响这些性能特征。在这里,我们使用两种不同的解码策略——支持向量机(SVM)分类器(代表实验室演示中离散运动分类的当前技术水平)和提出的深度神经网络(DNN)框架,系统地探索离散运动分类在准确性、响应延迟和多功能性之间的权衡。我们利用了一名人类四肢瘫痪研究参与者的历史皮层内记录,该参与者想象进行几种不同的手部和手指运动。对于这两种解码器,我们发现随着功能数量的增加,响应时间会增加(即反应变慢)且准确性会降低。然而,我们还发现,与SVM相比,DNN在增加功能时响应时间的增加和准确性的下降都更少。我们还表明,数据预处理步骤会以截然不同的方式影响两种解码器的性能特征。最后,我们使用DNN解码器实时评估了我们的四肢瘫痪参与者控制其瘫痪前臂功能性电刺激(FES)的性能。我们将他的表现与执行相同任务的健全参与者的表现进行了比较,为该任务上理想的BCI-FES性能建立了一个定量目标。总的来说,这些结果有助于量化与潜在用户相关的BCI解码器性能特征以及它们之间的复杂相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3739/6232881/b99fbf19c645/fnins-12-00763-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验