Martínez-Calderon M, Azkona J J, Casquero N, Rodríguez A, Domke Matthias, Gómez-Aranzadi M, Olaizola S M, Granados E
CEIT-IK4 & Tecnun, Manuel Lardizabal 15, 20018, Donostia, San Sebastián, Spain.
Josef Ressel Center for Material Processing with Ultrashort Pulsed Lasers, Research Center for Microtechnology Vorarlberg University of Applied Sciences, Dornbirn, Austria.
Sci Rep. 2018 Sep 24;8(1):14262. doi: 10.1038/s41598-018-32520-0.
We demonstrate a rapid, accurate, and convenient method for tailoring the optical properties of diamond surfaces by employing laser induced periodic surface structuring (LIPSSs). The characteristics of the fabricated photonic surfaces were adjusted by tuning the laser wavelength, number of impinging pulses, angle of incidence and polarization state. Using Finite Difference Time Domain (FDTD) modeling, the optical transmissivity and bandwidth was calculated for each fabricated LIPSSs morphology. The highest transmission of ~99.5% was obtained in the near-IR for LIPSSs structures with aspect ratios of the order of ~0.65. The present technique enabled us to identify the main laser parameters involved in the machining process, and to control it with a high degree of accuracy in terms of structure periodicity, morphology and aspect ratio. We also demonstrate and study the conditions for fabricating spatially coherent nanostructures over large areas maintaining a high degree of nanostructure repeatability and optical performance. While our experimental demonstrations have been mainly focused on diamond anti-reflection coatings and gratings, the technique can be easily extended to other materials and applications, such as integrated photonic devices, high power diamond optics, or the construction of photonic surfaces with tailored characteristics in general.
我们展示了一种通过采用激光诱导周期性表面结构(LIPSSs)来定制金刚石表面光学特性的快速、准确且便捷的方法。通过调整激光波长、入射脉冲数、入射角和偏振态来调节所制备光子表面的特性。使用时域有限差分(FDTD)建模,计算了每种制备的LIPSSs形态的光学透过率和带宽。对于纵横比约为0.65的LIPSSs结构,在近红外区域获得了高达约99.5%的最高透过率。本技术使我们能够识别加工过程中涉及的主要激光参数,并在结构周期性、形态和纵横比方面以高精度对其进行控制。我们还展示并研究了在大面积上制造空间相干纳米结构的条件,同时保持高度的纳米结构重复性和光学性能。虽然我们的实验演示主要集中在金刚石抗反射涂层和光栅上,但该技术可以轻松扩展到其他材料和应用,例如集成光子器件、高功率金刚石光学器件,或一般的具有定制特性的光子表面的构建。