Girolami Marco, Bellucci Alessandro, Mastellone Matteo, Orlando Stefano, Serpente Valerio, Valentini Veronica, Polini Riccardo, Sani Elisa, De Caro Tilde, Trucchi Daniele M
DiaTHEMA Lab, Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Sede Secondaria di Montelibretti, Via Salaria km 29,300, Monterotondo Stazione, 00015 Roma, Italy.
Dipartimento di Scienze di Base ed Applicate per l'Ingegneria, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Roma, Italy.
Materials (Basel). 2020 Dec 17;13(24):5761. doi: 10.3390/ma13245761.
Irradiation of diamond with femtosecond (fs) laser pulses in ultra-high vacuum (UHV) conditions results in the formation of surface periodic nanostructures able to strongly interact with visible and infrared light. As a result, native transparent diamond turns into a completely different material, namely "black" diamond, with outstanding absorptance properties in the solar radiation wavelength range, which can be efficiently exploited in innovative solar energy converters. Of course, even if extremely effective, the use of UHV strongly complicates the fabrication process. In this work, in order to pave the way to an easier and more cost-effective manufacturing workflow of black diamond, we demonstrate that it is possible to ensure the same optical properties as those of UHV-fabricated films by performing an fs-laser nanostructuring at ambient conditions (i.e., room temperature and atmospheric pressure) under a constant He flow, as inferred from the combined use of scanning electron microscopy, Raman spectroscopy, and spectrophotometry analysis. Conversely, if the laser treatment is performed under a compressed air flow, or a N flow, the optical properties of black diamond films are not comparable to those of their UHV-fabricated counterparts.
在超高真空(UHV)条件下用飞秒(fs)激光脉冲辐照金刚石会导致形成能够与可见光和红外光强烈相互作用的表面周期性纳米结构。结果,天然透明金刚石变成了一种完全不同的材料,即“黑色”金刚石,在太阳辐射波长范围内具有出色的吸收特性,可在创新的太阳能转换器中得到有效利用。当然,即使非常有效,超高真空的使用也会使制造过程变得非常复杂。在这项工作中,为了为更简便、更具成本效益的黑色金刚石制造工作流程铺平道路,我们证明,通过在恒定氦气流下在环境条件(即室温及大气压)下进行飞秒激光纳米结构化处理,可以确保获得与超高真空制造的薄膜相同的光学性能,这是通过结合使用扫描电子显微镜、拉曼光谱和分光光度分析推断出来的。相反,如果在压缩空气流或氮气流下进行激光处理,黑色金刚石薄膜的光学性能与其超高真空制造的对应物不可比。