Suppr超能文献

药物靶点鉴定方法的最新进展与研究综述

A Review of Recent Advances and Research on Drug Target Identification Methods.

机构信息

School of Life Science and Technology, Department of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin 150088, China.

出版信息

Curr Drug Metab. 2019;20(3):209-216. doi: 10.2174/1389200219666180925091851.

Abstract

BACKGROUND

From a therapeutic viewpoint, understanding how drugs bind and regulate the functions of their target proteins to protect against disease is crucial. The identification of drug targets plays a significant role in drug discovery and studying the mechanisms of diseases. Therefore the development of methods to identify drug targets has become a popular issue.

METHODS

We systematically review the recent work on identifying drug targets from the view of data and method. We compiled several databases that collect data more comprehensively and introduced several commonly used databases. Then divided the methods into two categories: biological experiments and machine learning, each of which is subdivided into different subclasses and described in detail.

RESULTS

Machine learning algorithms are the majority of new methods. Generally, an optimal set of features is chosen to predict successful new drug targets with similar properties. The most widely used features include sequence properties, network topological features, structural properties, and subcellular locations. Since various machine learning methods exist, improving their performance requires combining a better subset of features and choosing the appropriate model for the various datasets involved.

CONCLUSION

The application of experimental and computational methods in protein drug target identification has become increasingly popular in recent years. Current biological and computational methods still have many limitations due to unbalanced and incomplete datasets or imperfect feature selection methods.

摘要

背景

从治疗的角度来看,了解药物如何结合并调节其靶蛋白的功能以预防疾病是至关重要的。药物靶点的鉴定在药物发现和研究疾病机制中起着重要作用。因此,开发鉴定药物靶点的方法已成为一个热门问题。

方法

我们从数据和方法的角度系统地回顾了最近关于鉴定药物靶点的工作。我们编译了几个更全面地收集数据的数据库,并介绍了几个常用的数据库。然后将方法分为两类:生物实验和机器学习,每一类又细分为不同的子类,并进行了详细描述。

结果

机器学习算法是大多数新方法的主流。通常,会选择一组最佳特征来预测具有相似性质的成功新药靶。最广泛使用的特征包括序列特性、网络拓扑特征、结构特性和亚细胞定位。由于存在各种机器学习方法,因此要提高它们的性能,需要结合更好的特征子集,并为涉及的各种数据集选择合适的模型。

结论

近年来,实验和计算方法在蛋白质药物靶标识别中的应用越来越受到关注。由于数据集不平衡和不完整或特征选择方法不完善,当前的生物和计算方法仍然存在许多局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验