Suppr超能文献

DelPhiPKa:在计算中包含盐并使极性残基能够发生质子化。

DelPhiPKa: Including salt in the calculations and enabling polar residues to titrate.

机构信息

Department of Physics and Astronomy, Computational Biophysics and Bioinformatics, Clemson University, Clemson, South Carolina.

出版信息

Proteins. 2018 Dec;86(12):1277-1283. doi: 10.1002/prot.25608. Epub 2018 Oct 26.

Abstract

DelPhiPKa is a widely used and unique approach to compute pK 's of ionizable groups that does not require molecular surface to be defined. Instead, it uses smooth Gaussian-based dielectric function to treat computational space via Poisson-Boltzmann equation (PBE). Here, we report an expansion of DelPhiPKa functionality to enable inclusion of salt in the modeling protocol. The method considers the salt mobile ions in solvent phase without defining solute-solvent boundary. Instead, the ions are penalized to enter solute interior via a desolvation penalty term in the Boltzmann factor in the framework of PBE. Hence, the concentration of ions near the protein is balanced by the desolvation penalty and electrostatic interactions. The study reveals that correlation between experimental and calculated pK 's is improved significantly by taking into consideration the presence of salt. Furthermore, it is demonstrated that DelphiPKa reproduces the salt sensitivity of experimentally measured pK 's. Another new development of DelPhiPKa allows for computing the pK 's of polar residues such as cysteine, serine, threonine and tyrosine. With this regard, DelPhiPKa is benchmarked against experimentally measured cysteine and tyrosine pK 's and for cysteine it is shown to outperform other existing methods (DelPhiPKa RMSD of 1.73 vs RMSD between 2.40 and 4.72 obtained by other existing pK prediction methods).

摘要

DelPhiPKa 是一种广泛使用且独特的方法,可用于计算不需要定义分子表面的可电离基团的 pK '。相反,它使用基于平滑高斯的介电函数通过泊松-玻尔兹曼方程(PBE)处理计算空间。在这里,我们报告了 DelPhiPKa 功能的扩展,以实现将盐纳入建模协议中。该方法考虑了溶剂相中的盐移动离子,而无需定义溶质-溶剂边界。相反,离子通过在 PBE 框架中的玻尔兹曼因子中引入去溶剂化罚分项而被惩罚进入溶质内部。因此,通过去溶剂化罚分和静电相互作用来平衡蛋白质附近离子的浓度。研究表明,通过考虑盐的存在,实验和计算的 pK '之间的相关性得到了显著改善。此外,还证明了 DelphiPKa 再现了实验测量的 pK '的盐敏感性。DelPhiPKa 的另一个新发展允许计算半胱氨酸、丝氨酸、苏氨酸和酪氨酸等极性残基的 pK '。在这方面,DelPhiPKa 与实验测量的半胱氨酸和酪氨酸 pK '进行了基准测试,并且对于半胱氨酸,它表现优于其他现有方法(DelPhiPKa 的 RMSD 为 1.73,而其他现有 pK 预测方法获得的 RMSD 在 2.40 和 4.72 之间)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24c7/6294708/d817ea80c05c/nihms-993143-f0001.jpg

相似文献

5
Evaluation of Methods for the Calculation of the pKa of Cysteine Residues in Proteins.蛋白质中半胱氨酸残基pKa计算方法的评估。
J Chem Theory Comput. 2016 Sep 13;12(9):4662-73. doi: 10.1021/acs.jctc.6b00631. Epub 2016 Aug 31.
9
DelPhiPKa web server: predicting pKa of proteins, RNAs and DNAs.DelPhiPKa网络服务器:预测蛋白质、RNA和DNA的pKa值。
Bioinformatics. 2016 Feb 15;32(4):614-5. doi: 10.1093/bioinformatics/btv607. Epub 2015 Oct 29.

引用本文的文献

4
Adsorption of Diclofenac and PFBS on a Hair Keratin Dimer.双氯芬酸和全氟丁基磺酸在发角蛋白二聚体上的吸附。
J Phys Chem B. 2024 Jan 11;128(1):45-55. doi: 10.1021/acs.jpcb.3c04997. Epub 2023 Dec 28.

本文引用的文献

2
Evaluation of Methods for the Calculation of the pKa of Cysteine Residues in Proteins.蛋白质中半胱氨酸残基pKa计算方法的评估。
J Chem Theory Comput. 2016 Sep 13;12(9):4662-73. doi: 10.1021/acs.jctc.6b00631. Epub 2016 Aug 31.
6
Protonation and pK changes in protein-ligand binding.质子化和蛋白配体结合的 pK 变化。
Q Rev Biophys. 2013 May;46(2):181-209. doi: 10.1017/S0033583513000024.
8
BION web server: predicting non-specifically bound surface ions.BION 网络服务器:预测非特异性结合表面离子。
Bioinformatics. 2013 Mar 15;29(6):805-6. doi: 10.1093/bioinformatics/btt032. Epub 2013 Feb 3.
10
Predicting nonspecific ion binding using DelPhi.使用 DelPhi 预测非特异性离子结合。
Biophys J. 2012 Jun 20;102(12):2885-93. doi: 10.1016/j.bpj.2012.05.013. Epub 2012 Jun 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验