Suppr超能文献

使用 DelPhi 预测非特异性离子结合。

Predicting nonspecific ion binding using DelPhi.

机构信息

Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, USA.

出版信息

Biophys J. 2012 Jun 20;102(12):2885-93. doi: 10.1016/j.bpj.2012.05.013. Epub 2012 Jun 19.

Abstract

Ions are an important component of the cell and affect the corresponding biological macromolecules either via direct binding or as a screening ion cloud. Although some ion binding is highly specific and frequently associated with the function of the macromolecule, other ions bind to the protein surface nonspecifically, presumably because the electrostatic attraction is strong enough to immobilize them. Here, we test such a scenario and demonstrate that experimentally identified surface-bound ions are located at a potential that facilitates binding, which indicates that the major driving force is the electrostatics. Without taking into consideration geometrical factors and structural fluctuations, we show that ions tend to be bound onto the protein surface at positions with strong potential but with polarity opposite to that of the ion. This observation is used to develop a method that uses a DelPhi-calculated potential map in conjunction with an in-house-developed clustering algorithm to predict nonspecific ion-binding sites. Although this approach distinguishes only the polarity of the ions, and not their chemical nature, it can predict nonspecific binding of positively or negatively charged ions with acceptable accuracy. One can use the predictions in the Poisson-Boltzmann approach by placing explicit ions in the predicted positions, which in turn will reduce the magnitude of the local potential and extend the limits of the Poisson-Boltzmann equation. In addition, one can use this approach to place the desired number of ions before conducting molecular-dynamics simulations to neutralize the net charge of the protein, because it was shown to perform better than standard screened Coulomb canned routines, or to predict ion-binding sites in proteins. This latter is especially true for proteins that are involved in ion transport, because such ions are loosely bound and very difficult to detect experimentally.

摘要

离子是细胞的重要组成部分,通过直接结合或作为屏蔽离子云的方式影响相应的生物大分子。虽然一些离子结合具有高度特异性,并且经常与大分子的功能相关,但其他离子则非特异性地结合到蛋白质表面,推测是因为静电引力足够强,可以固定它们。在这里,我们测试了这样一种情况,并证明了实验确定的表面结合离子位于有利于结合的电位处,这表明主要驱动力是静电。在不考虑几何因素和结构波动的情况下,我们表明离子倾向于结合到具有强电位但极性与离子相反的蛋白质表面。这种观察结果被用于开发一种方法,该方法使用 DelPhi 计算的电位图与内部开发的聚类算法结合使用,以预测非特异性离子结合位点。尽管这种方法只能区分离子的极性,而不能区分其化学性质,但它可以以可接受的精度预测正离子或负离子的非特异性结合。可以在预测的位置放置显式离子,然后在泊松-玻尔兹曼方法中使用这些预测,这反过来又会降低局部电位的幅度并扩展泊松-玻尔兹曼方程的范围。此外,可以在进行分子动力学模拟之前使用这种方法放置所需数量的离子,以中和蛋白质的净电荷,因为它比标准屏蔽库仑罐头例程表现更好,或者预测蛋白质中的离子结合位点。对于涉及离子转运的蛋白质尤其如此,因为这些离子结合松散,很难在实验中检测到。

相似文献

1
Predicting nonspecific ion binding using DelPhi.使用 DelPhi 预测非特异性离子结合。
Biophys J. 2012 Jun 20;102(12):2885-93. doi: 10.1016/j.bpj.2012.05.013. Epub 2012 Jun 19.
4
BION web server: predicting non-specifically bound surface ions.BION 网络服务器:预测非特异性结合表面离子。
Bioinformatics. 2013 Mar 15;29(6):805-6. doi: 10.1093/bioinformatics/btt032. Epub 2013 Feb 3.
5
A repulsive field: advances in the electrostatics of the ion atmosphere.一个排斥场:离子氛围静电学的进展
Curr Opin Chem Biol. 2008 Dec;12(6):619-25. doi: 10.1016/j.cbpa.2008.10.010. Epub 2008 Dec 8.
8
Dynamics of Ionic Interactions at Protein-Nucleic Acid Interfaces.蛋白质-核酸界面处离子相互作用的动力学。
Acc Chem Res. 2020 Sep 15;53(9):1802-1810. doi: 10.1021/acs.accounts.0c00212. Epub 2020 Aug 26.

引用本文的文献

5
DelPhi Suite: New Developments and Review of Functionalities.德尔菲套房:新进展和功能回顾。
J Comput Chem. 2019 Oct 30;40(28):2502-2508. doi: 10.1002/jcc.26006. Epub 2019 Jun 25.

本文引用的文献

3
Crystal structure of HLA-DP2 and implications for chronic beryllium disease.HLA-DP2 晶体结构及其对慢性铍病的影响。
Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7425-30. doi: 10.1073/pnas.1001772107. Epub 2010 Mar 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验