Suppr超能文献

年龄相关遗传性疾病中的生存非参数估计及其在转甲状腺素相关遗传性淀粉样变性中的应用。

Non-parametric estimation of survival in age-dependent genetic disease and application to the transthyretin-related hereditary amyloidosis.

机构信息

Mathématiques appliquées Paris 5 (MAP5) CNRS: UMR8145 - Université Paris Descartes - Sorbonne Paris Cité, Paris, France.

Hôpital Universitaire Henri Mondor, Département de Neurologie Créteil, France.

出版信息

PLoS One. 2018 Sep 25;13(9):e0203860. doi: 10.1371/journal.pone.0203860. eCollection 2018.

Abstract

In genetic diseases with variable age of onset, survival function estimation for the mutation carriers as well as estimation of the modifying factors effects are essential to provide individual risk assessment, both for mutation carriers management and prevention strategies. In practice, this survival function is classically estimated from pedigrees data where most genotypes are unobserved. In this article, we present a unifying Expectation-Maximization (EM) framework combining probabilistic computations in Bayesian networks with standard statistical survival procedures in order to provide mutation carrier survival estimates. The proposed approach allows to obtain previously published parametric estimates (e.g. Weibull survival) as particular cases as well as more general Kaplan-Meier non-parametric estimates, which is the main contribution. Note that covariates can also be taken into account using a proportional hazard model. The whole methodology is both validated on simulated data and applied to family samples with transthyretin-related hereditary amyloidosis (a rare autosomal dominant disease with highly variable age of onset), showing very promising results.

摘要

在发病年龄存在变异的遗传性疾病中,对突变携带者的生存函数进行估计以及对修饰因子效应的估计对于提供个体风险评估至关重要,这对于突变携带者的管理和预防策略都是如此。在实践中,该生存函数通常是从家系数据中估计的,其中大多数基因型是不可观测的。在本文中,我们提出了一个统一的期望最大化(EM)框架,将贝叶斯网络中的概率计算与标准的统计生存程序相结合,以提供突变携带者的生存估计。所提出的方法允许获得先前发表的参数估计(例如威布尔生存)作为特例,以及更一般的 Kaplan-Meier 非参数估计,这是主要的贡献。值得注意的是,还可以使用比例风险模型来考虑协变量。整个方法在模拟数据上进行了验证,并应用于转甲状腺素相关遗传性淀粉样变性(一种罕见的常染色体显性疾病,发病年龄高度可变)的家系样本,结果非常有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a70/6155453/8d426a6724a4/pone.0203860.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验