Suppr超能文献

利用相关运动确定分子动力学的充分采样时间。

Using correlated motions to determine sufficient sampling times for molecular dynamics.

机构信息

Department of Physics and Department of Mathematics and Statistics, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, USA.

Department of Physics and Department of Computer Science, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, USA.

出版信息

Phys Rev E. 2018 Aug;98(2-1):023307. doi: 10.1103/PhysRevE.98.023307.

Abstract

Here we present a time-dependent correlation method that provides insight into how long a system takes to grow into its equal-time (Pearson) correlation. We also show a usage of an extant time-lagged correlation method that indicates the time for parts of a system to become decorrelated, relative to equal-time correlation. Given a completed simulation (or set of simulations), these tools estimate (i) how long of a simulation of the same system would be sufficient to observe the same correlated motions, (ii) if patterns of observed correlated motions indicate events beyond the timescale of the simulation, and (iii) how long of a simulation is needed to observe these longer timescale events. We view this method as a decision-support tool that will aid researchers in determining necessary sampling times. In principle, this tool is extendable to any multidimensional time series data with a notion of correlated fluctuations; however, here we limit our discussion to data from molecular-dynamics simulations.

摘要

在这里,我们提出了一种时变相关方法,可以深入了解系统需要多长时间才能发展成其等时(Pearson)相关。我们还展示了一种现有时滞相关方法的用法,该方法表明系统各部分相对于等时相关变得去相关所需的时间。对于已完成的模拟(或模拟集),这些工具可以估计:(i)相同系统的模拟需要多长时间才能观察到相同的相关运动;(ii)观察到的相关运动模式是否指示了超出模拟时间尺度的事件;(iii)需要多长时间的模拟才能观察到这些更长时间尺度的事件。我们将这种方法视为一种决策支持工具,将帮助研究人员确定必要的采样时间。原则上,这种工具可以扩展到任何具有相关波动概念的多维时间序列数据;但是,在这里,我们将讨论限制在来自分子动力学模拟的数据。

相似文献

1
Using correlated motions to determine sufficient sampling times for molecular dynamics.
Phys Rev E. 2018 Aug;98(2-1):023307. doi: 10.1103/PhysRevE.98.023307.
2
Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.
J Phys Chem B. 2015 Jan 22;119(3):1114-28. doi: 10.1021/jp506609g. Epub 2014 Oct 28.
4
(Dis)similarity Index To Compare Correlated Motions in Molecular Simulations.
J Chem Theory Comput. 2015 Sep 8;11(9):4404-14. doi: 10.1021/acs.jctc.5b00512. Epub 2015 Aug 27.
7
Simple, yet powerful methodologies for conformational sampling of proteins.
Phys Chem Chem Phys. 2015 Mar 7;17(9):6155-73. doi: 10.1039/c4cp05262e.
8
Long-timescale motions in glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulation.
J Mol Graph Model. 2015 Feb;55:48-64. doi: 10.1016/j.jmgm.2014.10.016. Epub 2014 Nov 8.
9
Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds.
Acc Chem Res. 2013 Sep 17;46(9):2028-36. doi: 10.1021/ar300292p. Epub 2013 Jul 23.
10
Exploring free energy landscapes of large conformational changes: molecular dynamics with excited normal modes.
J Chem Theory Comput. 2015 Jun 9;11(6):2755-67. doi: 10.1021/acs.jctc.5b00003.

本文引用的文献

1
Mechanistic insights into thrombin's switch between "slow" and "fast" forms.
Phys Chem Chem Phys. 2017 Sep 20;19(36):24522-24533. doi: 10.1039/c7cp03671j.
2
All-atom molecular dynamics comparison of disease-associated zinc fingers.
J Biomol Struct Dyn. 2018 Aug;36(10):2581-2594. doi: 10.1080/07391102.2017.1363662. Epub 2017 Oct 3.
3
All-Atom MD Predicts Magnesium-Induced Hairpin in Chemically Perturbed RNA Analog of F10 Therapeutic.
J Phys Chem B. 2017 Aug 24;121(33):7803-7812. doi: 10.1021/acs.jpcb.7b04724. Epub 2017 Aug 10.
4
Binding Site Configurations Probe the Structure and Dynamics of the Zinc Finger of NEMO (NF-κB Essential Modulator).
Biochemistry. 2017 Jan 31;56(4):623-633. doi: 10.1021/acs.biochem.6b00755. Epub 2017 Jan 13.
5
An Implementation of the Smooth Particle Mesh Ewald Method on GPU Hardware.
J Chem Theory Comput. 2009 Sep 8;5(9):2371-7. doi: 10.1021/ct900275y.
6
ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale.
J Chem Theory Comput. 2009 Jun 9;5(6):1632-9. doi: 10.1021/ct9000685. Epub 2009 May 21.
7
Interaction Networks in Protein Folding via Atomic-Resolution Experiments and Long-Time-Scale Molecular Dynamics Simulations.
J Am Chem Soc. 2015 May 27;137(20):6506-16. doi: 10.1021/jacs.5b02324. Epub 2015 May 12.
8
Importance of long-time simulations for rare event sampling in zinc finger proteins.
J Biomol Struct Dyn. 2016;34(1):125-34. doi: 10.1080/07391102.2015.1015168. Epub 2015 Apr 9.
10
Beating the millisecond barrier in molecular dynamics simulations.
Biophys J. 2015 Jan 20;108(2):228-9. doi: 10.1016/j.bpj.2014.11.3477.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验