Suppr超能文献

使用身体机能和自我报告测量方法进行聚类分析,以识别从事过头运动的女性运动员的肩部损伤。

Cluster analysis using physical performance and self-report measures to identify shoulder injury in overhead female athletes.

作者信息

Gaudet Sylvain, Begon Mickaël, Tremblay Jonathan

机构信息

Département de Kinésiologie, Université de Montréal, Canada.

Département de Kinésiologie, Université de Montréal, Canada.

出版信息

J Sci Med Sport. 2019 Mar;22(3):269-274. doi: 10.1016/j.jsams.2018.09.224. Epub 2018 Sep 14.

Abstract

OBJECTIVES

To evaluate the diagnostic validity of the Kerlan-Jobe orthopedic clinic shoulder and elbow score (KJOC) and the Closed kinetic upper extremity stability test (CKCUEST) to assess functional impairments associated with shoulder injury in overhead female athletic populations.

DESIGN

Cross-sectional design.

METHODS

Thirty-four synchronized swimming and team handball female athletes completed the KJOC and the CKCUEST during their respective team selection trials. Unsupervised learning using k-means algorithm was used on collected data to perform group clustering and classify athletes as Injured or Not Injured. Odds ratios, likelihood ratios, sensitivity and specificity were computed based on the self-reported presence of shoulder injury at the time of testing or during the previous year.

RESULTS

Seven of the 34 athletes were injured or had suffered a time-loss injury in the previous year, representing a 20.5% prevalence rate. Clustering method using KJOC data resulted in a sensitivity of 86%, a specificity of 100% and a 229.67 diagnostic odds ratio. Clustering method using CKCUEST data resulted in a sensitivity of 86%, a specificity of 37% and a 3.53 diagnostic odds ratio.

CONCLUSIONS

KJOC had good diagnostic validity to assess shoulder function and differentiate between injured and non-injured elite synchronized swimming and team handball female athletes. The CKCUEST seemed to be a poor screening test but may be an interesting test to evaluate functional upper extremity strength and plyometric capacity. Unsupervised learning methods allow to make decisions based on numerous variables which is an advantage when considering the usually substantial overlap in screening test scores between high- and low-risk athletes.

摘要

目的

评估Kerlan-Jobe骨科诊所肩肘评分(KJOC)和闭合动力链上肢稳定性测试(CKCUEST)在评估从事上肢运动的女性运动员肩部损伤相关功能障碍方面的诊断效度。

设计

横断面设计。

方法

34名花样游泳和女子手球运动员在各自的团队选拔试验中完成了KJOC和CKCUEST测试。对收集的数据使用k均值算法进行无监督学习,以进行分组聚类,并将运动员分为受伤组和未受伤组。根据测试时或前一年自我报告的肩部损伤情况,计算优势比、似然比、敏感性和特异性。

结果

34名运动员中有7人在前一年受伤或曾有过导致停训的损伤,患病率为20.5%。使用KJOC数据的聚类方法得出的敏感性为86%,特异性为100%,诊断优势比为229.67。使用CKCUEST数据的聚类方法得出的敏感性为86%,特异性为37%,诊断优势比为3.53。

结论

KJOC在评估肩部功能以及区分受伤和未受伤的精英花样游泳和女子手球女运动员方面具有良好的诊断效度。CKCUEST似乎是一种较差的筛查测试,但可能是评估上肢功能力量和增强式训练能力的一项有趣测试。无监督学习方法允许基于众多变量做出决策,这在考虑高风险和低风险运动员筛查测试分数通常存在大量重叠的情况下是一个优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验