Suppr超能文献

识别近期寨卡病毒输入风险最高的地区——纽约市,2016年

Identifying Areas at Greatest Risk for Recent Zika Virus Importation - New York City, 2016.

作者信息

Greene Sharon K, Lim Sungwoo, Fine Annie

机构信息

New York City Department of Health and Mental Hygiene.

Bureau of Epidemiology Services, New York City Department of Health and Mental Hygiene, Queens, NY, USA.

出版信息

PLoS Curr. 2018 Jul 25;10:ecurrents.outbreaks.00dd49d24b62731f87f12b0e657aa04c. doi: 10.1371/currents.outbreaks.00dd49d24b62731f87f12b0e657aa04c.

Abstract

INTRODUCTION

The New York City Department of Health and Mental Hygiene sought to detect and minimize the risk of local, mosquito-borne Zika virus (ZIKV) transmission. We modeled areas at greatest risk for recent ZIKV importation, in the context of spatially biased ZIKV case ascertainment and no data on the local spatial distribution of persons arriving from ZIKV-affected countries.

METHODS

For each of 14 weeks during June-September 2016, we used logistic regression to model the census tract-level presence of any ZIKV cases in the prior month, using eight covariates from static sociodemographic census data and the latest surveillance data, restricting to census tracts with any ZIKV testing in the prior month. To assess whether the model discriminated better than random between census tracts with and without recent cases, we compared the area under the receiver operating characteristic (ROC) curve for each week's fitted model versus an intercept-only model applied to cross-validated data. For weeks where the ROC contrast test was significant at 0.05, we output and mapped the model-predicted individual probabilities for all census tracts, including those with no recent testing.

RESULTS

The ROC contrast test was significant for 8 of 14 weekly analyses. No covariates were consistently associated with the presence of recent cases. Modeled risk areas fluctuated across these 8 weeks, with Spearman correlation coefficients ranging from 0.30 to 0.93, all 0.0001. Areas in the Bronx and upper Manhattan were in the highest risk decile as of late June, while as of late August, the greatest risk shifted to eastern Brooklyn.

CONCLUSION

We used observable characteristics of areas with recent, known travel-associated ZIKV cases to identify similar areas with no observed cases that might also be at-risk each week. Findings were used to target public education and spp. mosquito surveillance and control. These methods are applicable to other conditions for which biased case ascertainment is suspected and knowledge of how cases are geographically distributed is important for targeting public health activities.

摘要

引言

纽约市卫生和精神卫生部门试图检测并尽量降低本地蚊虫传播寨卡病毒(ZIKV)的风险。在寨卡病毒病例确诊存在空间偏差且缺乏来自寨卡病毒感染国家的人员本地空间分布数据的情况下,我们对近期寨卡病毒输入风险最高的区域进行了建模。

方法

在2016年6月至9月的14周内,我们使用逻辑回归,以前一个月的八个协变量(来自静态社会人口普查数据和最新监测数据)为基础,对普查区层面前一个月是否存在寨卡病毒病例进行建模,建模范围限制在前一个月进行过寨卡病毒检测的普查区。为了评估该模型在区分有近期病例和无近期病例的普查区方面是否比随机情况表现更好,我们将每周拟合模型的受试者工作特征(ROC)曲线下面积与应用于交叉验证数据的仅含截距模型进行比较。对于ROC对比检验在0.05水平显著的周次,我们输出并绘制所有普查区(包括那些近期未进行检测的普查区)的模型预测个体概率。

结果

14次每周分析中有8次的ROC对比检验显著。没有协变量与近期病例的存在始终相关。在这8周内,建模的风险区域有所波动,斯皮尔曼相关系数范围为0.30至0.93,均<0.0001。截至6月下旬,布朗克斯区和曼哈顿上城的区域处于最高风险十分位,而截至8月下旬,最大风险转移到了布鲁克林东部。

结论

我们利用近期已知与旅行相关的寨卡病毒病例所在区域的可观察特征,来识别每周可能也处于风险中的无观察病例的类似区域。研究结果被用于指导公共教育以及蚊虫监测和控制。这些方法适用于其他疑似病例确诊存在偏差且了解病例地理分布情况对确定公共卫生活动目标很重要的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c268/6126530/3c01050f5363/Table-1_rev2.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验