Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA.
Sci Adv. 2018 Sep 21;4(9):eaau1540. doi: 10.1126/sciadv.aau1540. eCollection 2018 Sep.
Magic angle spinning (MAS) is commonly used in nuclear magnetic resonance of solids to improve spectral resolution. Rather than using cylindrical rotors for MAS, we demonstrate that spherical rotors can be spun stably at the magic angle. Spherical rotors conserve valuable space in the probe head and simplify sample exchange and microwave coupling for dynamic nuclear polarization. In this current implementation of spherical rotors, a single gas stream provides bearing gas to reduce friction, drive propulsion to generate and maintain angular momentum, and variable temperature control for thermostating. Grooves are machined directly into zirconia spheres, thereby converting the rotor body into a robust turbine with high torque. We demonstrate that 9.5-mm-outside diameter spherical rotors can be spun at frequencies up to 4.6 kHz with N(g) and 10.6 kHz with He(g). Angular stability of the spinning axis is demonstrated by observation of Br rotational echoes out to 10 ms from KBr packed within spherical rotors. Spinning frequency stability of ±1 Hz is achieved with resistive heating feedback control. A sample size of 36 μl can be accommodated in 9.5-mm-diameter spheres with a cylindrical hole machined along the spinning axis. We further show that spheres can be more extensively hollowed out to accommodate 161 μl of the sample, which provides superior signal-to-noise ratio compared to traditional 3.2-mm-diameter cylindrical rotors.
魔角旋转(MAS)常用于固体核磁共振以提高光谱分辨率。我们演示了,与使用圆柱转子进行 MAS 相比,球形转子可以在魔角下稳定旋转。球形转子在探头头部节省了宝贵的空间,并简化了样品交换和微波耦合,以实现动态核极化。在当前的球形转子实现中,单个气流提供轴承气体以减少摩擦,产生和维持角动量的推进力,以及用于恒温控制的变温控制。直接在氧化锆球体上加工出凹槽,从而将转子体转换为具有高扭矩的坚固涡轮机。我们演示了,9.5 毫米外径的球形转子可以在 N(g)下以 4.6 kHz 的频率旋转,在 He(g)下以 10.6 kHz 的频率旋转。通过观察在 KBr 填充于球形转子内时最远达 10 ms 的 Br 旋转回波,证明了旋转轴的角稳定性。通过电阻加热反馈控制,实现了 ±1 Hz 的旋转频率稳定性。在 9.5 毫米直径的球体中可以容纳 36 μl 的样品,并且在沿着旋转轴加工的圆柱形孔中。我们进一步表明,球体可以进一步掏空,以容纳 161 μl 的样品,与传统的 3.2 毫米直径的圆柱形转子相比,提供了更高的信噪比。