Suppr超能文献

通过 Dirichlet 过程混合模型聚类进行全基因组 miRNA 靶标预测。

Genome-scale MicroRNA target prediction through clustering with Dirichlet process mixture model.

机构信息

Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.

Department of Electrical and Computer Engineering, McGill University, Quebec, Canada.

出版信息

BMC Genomics. 2018 Sep 24;19(Suppl 7):658. doi: 10.1186/s12864-018-5029-7.

Abstract

BACKGROUND

MicroRNA regulation is fundamentally responsible for fine-tuning the whole gene network in human and has been implicated in most physiological and pathological conditions. Studying regulatory impact of microRNA on various cellular and disease processes has resulted in numerous computational tools that investigate microRNA-mRNA interactions through the prediction of static binding site highly dependent on sequence pairing. However, what hindered the practical use of such target prediction is the interplay between competing and cooperative microRNA binding that complicates the whole regulatory process exceptionally.

RESULTS

We developed a new method for improved microRNA target prediction based on Dirichlet Process Gaussian Mixture Model (DPGMM) using a large collection of molecular features associated with microRNA, mRNA, and the interaction sites. Multiple validations based on microRNA-mRNA interactions reported in recent large-scale sequencing analyses and a screening test on the entire human transcriptome show that our model outperformed several state-of-the-art tools in terms of promising predictive power on binding sites specific to transcript isoforms with reduced false positive prediction. Last, we illustrated the use of predicted targets in constructing conditional microRNA-mediated gene regulation networks in human cancer.

CONCLUSION

The probability-based binding site prediction provides not only a useful tool for differentiating microRNA targets according to the estimated binding potential but also a capability highly important for exploring dynamic regulation where binding competition is involved.

摘要

背景

MicroRNA 调控从根本上负责微调人类的整个基因网络,并与大多数生理和病理条件有关。研究 MicroRNA 对各种细胞和疾病过程的调控影响导致了许多计算工具,这些工具通过预测静态结合位点来研究 MicroRNA-mRNA 相互作用,这些结合位点高度依赖于序列配对。然而,阻碍这种靶标预测实际应用的是竞争和合作 MicroRNA 结合之间的相互作用,这使得整个调控过程异常复杂。

结果

我们开发了一种基于 Dirichlet 过程高斯混合模型 (DPGMM) 的新方法,该方法使用与 MicroRNA、mRNA 和相互作用位点相关的大量分子特征进行改进的 MicroRNA 靶标预测。基于最近大规模测序分析中报道的 MicroRNA-mRNA 相互作用和对整个人类转录组的筛选测试的多次验证表明,我们的模型在预测特定于转录本异构体的结合位点方面具有有前途的预测能力,并且假阳性预测减少,优于几种最先进的工具。最后,我们说明了在构建人类癌症中条件性 MicroRNA 介导的基因调控网络中使用预测的靶标。

结论

基于概率的结合位点预测不仅为根据估计的结合潜力区分 MicroRNA 靶标提供了有用的工具,而且为探索涉及结合竞争的动态调控提供了非常重要的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7649/6157162/23c8605c9d62/12864_2018_5029_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验