Suppr超能文献

覆盖二元数据的层次狄利克雷混合模型,以增强肿瘤血液学中的基因组分层。

Covering Hierarchical Dirichlet Mixture Models on binary data to enhance genomic stratifications in onco-hematology.

机构信息

IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia.

Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

PLoS Comput Biol. 2024 Feb 2;20(2):e1011299. doi: 10.1371/journal.pcbi.1011299. eCollection 2024 Feb.

Abstract

Onco-hematological studies are increasingly adopting statistical mixture models to support the advancement of the genomically-driven classification systems for blood cancer. Targeting enhanced patients stratification based on the sole role of molecular biology attracted much interest and contributes to bring personalized medicine closer to reality. In onco-hematology, Hierarchical Dirichlet Mixture Models (HDMM) have become one of the preferred method to cluster the genomics data, that include the presence or absence of gene mutations and cytogenetics anomalies, into components. This work unfolds the standard workflow used in onco-hematology to improve patient stratification and proposes alternative approaches to characterize the components and to assign patient to them, as they are crucial tasks usually supported by a priori clinical knowledge. We propose (a) to compute the parameters of the multinomial components of the HDMM or (b) to estimate the parameters of the HDMM components as if they were Multivariate Fisher's Non-Central Hypergeometric (MFNCH) distributions. Then, our approach to perform patients assignments to the HDMM components is designed to essentially determine for each patient its most likely component. We show on simulated data that the patients assignment using the MFNCH-based approach can be superior, if not comparable, to using the multinomial-based approach. Lastly, we illustrate on real Acute Myeloid Leukemia data how the utilization of MFNCH-based approach emerges as a good trade-off between the rigorous multinomial-based characterization of the HDMM components and the common refinement of them based on a priori clinical knowledge.

摘要

肿瘤血液病学研究越来越多地采用统计混合模型,以支持基于基因组的血液癌分类系统的发展。基于分子生物学的单一作用,针对增强患者分层的目标引起了很大的兴趣,并有助于使个性化医学更接近现实。在肿瘤血液病学中,层次狄利克雷混合模型 (HDMM) 已成为聚类基因组学数据的首选方法之一,这些数据包括基因突变和细胞遗传学异常的存在与否。这项工作展开了肿瘤血液病学中用于改善患者分层的标准工作流程,并提出了替代方法来描述组件并将患者分配给它们,因为它们是通常由先验临床知识支持的关键任务。我们提出 (a) 计算 HDMM 的多项成分的参数,或 (b) 估计 HDMM 成分的参数,就像它们是多元 Fisher 非中心超几何 (MFNCH) 分布一样。然后,我们设计的将患者分配给 HDMM 组件的方法旨在为每个患者确定其最可能的组件。我们在模拟数据上表明,使用基于 MFNCH 的方法进行患者分配可以优于,即使不可比,使用基于多项的方法。最后,我们在真实的急性髓细胞白血病数据上说明了如何利用基于 MFNCH 的方法来实现 HDMM 组件的严格基于多项的表征与基于先验临床知识的常见细化之间的良好折衷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25a/10880984/7e2e066d7be1/pcbi.1011299.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验