Quintana Alberto, Menéndez Enric, Liedke Maciej O, Butterling Maik, Wagner Andreas, Sireus Veronica, Torruella Pau, Estradé Sònia, Peiró Francesca, Dendooven Jolien, Detavernier Christophe, Murray Peyton D, Gilbert Dustin Allen, Liu Kai, Pellicer Eva, Nogues Josep, Sort Jordi
Departament de Física , Universitat Autònoma de Barcelona , E-08193 Cerdanyola del Vallès , Spain.
Institute of Radiation Physics , Helmholtz-Center Dresden-Rossendorf , Dresden 01328 , Germany.
ACS Nano. 2018 Oct 23;12(10):10291-10300. doi: 10.1021/acsnano.8b05407. Epub 2018 Oct 1.
Electric-field-controlled magnetism can boost energy efficiency in widespread applications. However, technologically, this effect is facing important challenges: mechanical failure in strain-mediated piezoelectric/magnetostrictive devices, dearth of room-temperature multiferroics, or stringent thickness limitations in electrically charged metallic films. Voltage-driven ionic motion (magneto-ionics) circumvents most of these drawbacks while exhibiting interesting magnetoelectric phenomena. Nevertheless, magneto-ionics typically requires heat treatments and multicomponent heterostructures. Here we report on the electrolyte-gated and defect-mediated O and Co transport in a CoO single layer which allows for room-temperature voltage-controlled ON-OFF ferromagnetism (magnetic switch) via internal reduction/oxidation processes. Negative voltages partially reduce CoO to Co (ferromagnetism: ON), resulting in graded films including Co- and O-rich areas. Positive bias oxidizes Co back to CoO (paramagnetism: OFF). This electric-field-induced atomic-scale reconfiguration process is compositionally, structurally, and magnetically reversible and self-sustained, since no oxygen source other than the CoO itself is required. This process could lead to electric-field-controlled device concepts for spintronics.
电场控制的磁性可提高广泛应用中的能源效率。然而,从技术角度来看,这种效应面临着重大挑战:应变介导的压电/磁致伸缩器件中的机械故障、室温多铁性材料的匮乏,或带电金属薄膜中严格的厚度限制。电压驱动的离子运动(磁离子学)规避了大多数这些缺点,同时展现出有趣的磁电现象。尽管如此,磁离子学通常需要热处理和多组分异质结构。在此,我们报道了在CoO单层中通过电解质门控和缺陷介导的O和Co传输,这使得通过内部还原/氧化过程实现室温电压控制的开-关铁磁性(磁开关)成为可能。负电压会将CoO部分还原为Co(铁磁性:开),从而形成包括富Co和富O区域的梯度薄膜。正偏压会将Co重新氧化为CoO(顺磁性:关)。这种电场诱导的原子尺度重构过程在成分、结构和磁性方面都是可逆且自我维持的,因为除了CoO本身外不需要其他氧源。这一过程可能会催生用于自旋电子学的电场控制器件概念。