Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Cerdanyola del Vallès, E-08193 Barcelona, Spain.
Mater Horiz. 2023 Jan 3;10(1):88-96. doi: 10.1039/d2mh01087a.
Magneto-ionics, which deals with the change of magnetic properties through voltage-driven ion migration, is expected to be one of the emerging technologies to develop energy-efficient spintronics. While a precise modulation of magnetism is achieved when voltage is applied, much more uncontrolled is the spontaneous evolution of magneto-ionic systems upon removing the electric stimuli (, post-stimulated behavior). Here, we demonstrate a voltage-controllable N ion accumulation effect at the outer surface of CoN films adjacent to a liquid electrolyte, which allows for the control of magneto-ionic properties both during and after voltage pulse actuation (, stimulated and post-stimulated behavior, respectively). This effect, which takes place when the CoN film thickness is below 50 nm and the voltage pulse frequency is at least 100 Hz, is based on the trade-off between generation (voltage ON) and partial depletion (voltage OFF) of ferromagnetism in CoN by magneto-ionics. This novel effect may open opportunities for new neuromorphic computing functions, such as post-stimulated neural learning under deep sleep.
磁离子学是一门通过电压驱动离子迁移来改变磁性能的学科,有望成为开发节能型自旋电子学的新兴技术之一。当施加电压时,可以实现对磁性的精确调制,但在去除电刺激时(即后激励行为),磁离子系统的自发演变要复杂得多。在这里,我们在紧邻液态电解质的 CoN 薄膜外表面演示了一种可通过电压控制的 N 离子积累效应,这使得可以在电压脉冲激励期间和之后(分别为激励和后激励行为)控制磁离子特性。当 CoN 薄膜厚度低于 50nm 且电压脉冲频率至少为 100Hz 时,会发生这种效应,其基础是磁离子学通过 CoN 中生成(电压 ON)和部分耗尽(电压 OFF)铁磁性之间的权衡。这种新效应可能为新的神经形态计算功能开辟机会,例如在深度睡眠下的后激励神经学习。