Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas.
Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas.
J Histochem Cytochem. 2018 Apr;66(4):229-239. doi: 10.1369/0022155417739864. Epub 2018 Jan 1.
Circulating neutrophils, rapidly recruited in response to microbial infection, form the first line in host defense. Humans express ~50 chemokines, of which a subset of seven chemokines, characterized by the conserved "Glu-Leu-Arg" motif, mediate neutrophil recruitment. Neutrophil-activating chemokines (NACs) share similar structures, exist as monomers and dimers, activate the CXCR2 receptor on neutrophils, and interact with tissue glycosaminoglycans (GAGs). Considering cellular assays have shown that NACs have similar CXCR2 activity, the question has been and remains, why do humans express so many NACs? In this review, we make the case that NACs are not redundant and that distinct GAG interactions determine chemokine-specific in vivo functions. Structural studies have shown that the GAG-binding interactions of NACs are distinctly different, and that conserved and specific residues in the context of structure determine geometries that could not have been predicted from sequences alone. Animal studies indicate recruitment profiles of monomers and dimers are distinctly different, monomer-dimer equilibrium regulates recruitment, and that recruitment profiles vary between chemokines and between tissues, providing evidence that GAG interactions orchestrate neutrophil recruitment. We propose in vivo GAG interactions impact several chemokine properties including gradients and lifetime, and that these interactions fine-tune and define the functional response of each chemokine that can vary between different cell and tissue types for successful resolution of inflammation.
循环中性粒细胞是宿主防御的第一道防线,它们能够迅速响应微生物感染而募集。人类表达约 50 种趋化因子,其中一组 7 种趋化因子,其特征是保守的“Glu-Leu-Arg”基序,介导中性粒细胞的募集。中性粒细胞激活趋化因子(NACs)具有相似的结构,以单体和二聚体形式存在,激活中性粒细胞上的 CXCR2 受体,并与组织糖胺聚糖(GAGs)相互作用。考虑到细胞实验表明 NACs 具有相似的 CXCR2 活性,人们一直存在疑问,为什么人类表达如此多的 NACs?在这篇综述中,我们认为 NACs 并非冗余,并且不同的 GAG 相互作用决定了趋化因子的特定体内功能。结构研究表明,NACs 的 GAG 结合相互作用明显不同,结构背景下的保守和特定残基决定了仅从序列无法预测的几何形状。动物研究表明单体和二聚体的募集谱明显不同,单体-二聚体平衡调节募集,并且募集谱在趋化因子之间和组织之间存在差异,这为 GAG 相互作用协调中性粒细胞募集提供了证据。我们提出,体内 GAG 相互作用影响几种趋化因子的特性,包括梯度和寿命,并且这些相互作用可以微调并定义每种趋化因子的功能反应,这种反应可以在不同的细胞和组织类型之间变化,以成功解决炎症。